Part Number Hot Search : 
MA4ST080 1A101 NTE9094 CMZ5370B MZO52FAD MM1421 DZC33 CM7555
Product Description
Full Text Search
 

To Download STM32F302C8T7 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. december 2014 docid025147 rev 3 1/135 stm32f302x6 stm32f302x8 arm ? cortex ? -m4 32-bit mcu+fpu, up to 64 kb flash, 16 kb sram, adc, dac, usb, can, comp, op-amp, 2.0 - 3.6 v datasheet - production data lqfp48 (7 x 7 mm) lqfp64 (10 x 10 mm) ufqfpn32 (5 x 5 mm) wlcsp49 (3.4 x 3.4 mm) features ? core: arm ? 32-bit cortex ? -m4 cpu with fpu (72 mhz max.), single-cycle multiplication and hw division, dsp instruction ? memories ? 32 to 64 kbyte of flash memory ?16 kbyte of sram on data bus ? crc calculation unit ? reset and power management ?v dd , v dda voltage range: 2.0 to 3.6 v ? power-on/power down reset (por/pdr) ? programmable voltage detector (pvd) ? low-power: sleep, stop, and standby ?v bat supply for rtc and backup registers ? clock management ? 4 to 32 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? internal 8 mhz rc with x 16 pll option ? internal 40 khz oscillator ? up to 51 fast i/o ports, all mappable on external interrupt vectors, several 5 v-tolerant ? interconnect matrix ? 7-channel dma controller supporting timers, adcs, spis, i 2 cs, usarts and dac ? 1 adc 0.20 s (up to 15 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 v conversion range, single ended/differential mode, separate analog supply from 2.0 to 3.6 v ? temperature sensor ? 1 x 12-bit dac channel with analog supply from 2.4 to 3.6 v ? three fast rail-to-rail analog comparators with analog supply from 2.0 to 3.6 v ? 1 x operational amplifier that can be used in pga mode, all terminal accessible with analog supply from 2.4 to 3.6 v ? up to 18 capacitive sensing channels supporting touchkey, linear and rotary sensors ? up to 9 timers ? one 32-bit timer with up to 4 ic/oc/pwm or pulse counter and quadrature (incremental) encoder input ? one 16-bit 6-channel advanced-control timer, with up to 6 pwm channels, deadtime generation and emergency stop ? three 16-bit timers with ic/oc/ocn or pwm, deadtime gen. and emergency stop ? one 16-bit basic timer to drive the dac ? 2 watchdog timers (independent, window) ? systick timer: 24-bit downcounter ? calendar rtc with alarm, periodic wakeup from stop/standby ? communication interfaces ? three i2cs with 20 ma current sink to support fast mode plus ? up to 3 usarts, 1 with iso 7816 i/f, autobaudrate detect and dual clock domain ? up to two spis with multiplexed full duplex i2s ? usb 2.0 full-speed interface ? 1 x can interface (2.0b active) ? infrared transmitter ? serial wire debug (swd), jtag ? 96-bit unique id reference part number stm32f302x6 stm32f302r6, stm32f302c6, stm32f302k6 stm32f302x8 stm32f302r8, stm32f302c8, stm32f302k8 www.st.com
docid025147 rev 3 2/135 stm32f302x6 stm32f302x8 contents 4 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 arm ? cortex ? -m4 core with fpu, embedded flash and sram . . . . . . . 12 3.2 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.2 embedded sram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 cyclic redundancy check calculation unit (crc) . . . . . . . . . . . . . . . . . . . 13 3.5 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.4 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 general-purpose inputs/outputs (gpios) . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.9 direct memory access (dma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10 interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.1 nested vectored interrupt controller (nvic) . . . . . . . . . . . . . . . . . . . . . . 18 3.11 fast analog-to-digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.3 v bat battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 digital-to-analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 operational amplifier (opamp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 ultra-fast comparators (comp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15.1 advanced timer (tim1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15.2 general-purpose timers (tim2, tim15, tim16, tim17) . . . . . . . . . . . . . 22 3.15.3 basic timer (tim6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
contents stm32f302x6 stm32f302x8 3/135 docid025147 rev 3 3.15.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.5 window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.6 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 real-time clock (rtc) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.17 inter-integrated circuit interfaces (i 2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.18 universal synchronous/asynchronous receiver transmitter (usart) . . . 26 3.19 serial peripheral interfaces (spi)/inter-integrated sound interfaces (i2s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.20 controller area network (can) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.21 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22 touch sensing controller (tsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.23 infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.24 development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.24.1 serial wire jtag debug port (swj-dp) . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.2 operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 58 6.3.3 embedded reset and power control block characteristics . . . . . . . . . . . 58 6.3.4 embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.5 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.6 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
docid025147 rev 3 4/135 stm32f302x6 stm32f302x8 contents 4 6.3.7 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.8 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.9 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.10 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.11 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.12 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.13 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.14 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.15 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.16 timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.17 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.18 adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.19 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.20 comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.21 operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.22 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3.23 v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.2 selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 131 8 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
docid025147 rev 3 5/135 stm32f302x6 stm32f302x8 list of tables 6 list of tables table 1. stm32f302x6/8 device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 2. external analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 3. stm32f302x6/8 peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 4. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 5. comparison of i2c analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 6. stm32f302x6/8 i 2 c implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 7. usart features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 8. stm32f302x6/8 spi/i2s implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 9. capacitive sensing gpios available on stm32f302x6/8 devices . . . . . . . . . . . . . . . . . . . 28 table 10. no. of capacitive sensing channels available on stm32f302x6/8 devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 11. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table 12. stm32f302x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 table 13. alternate functions for port a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 table 14. alternate functions for port b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 table 15. alternate functions for port c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 16. alternate functions for port d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 17. alternate functions for port f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 18. stm32f302x6 stm32f302x8 peripheral register boundary addresses . . . . . . . . . . . . . . 49 table 19. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 20. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 21. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 22. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 23. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 24. embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 25. programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 26. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 27. internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 28. typical and maximum current consumption from vdd supply at vdd = 3.6v . . . . . . . . . . 61 table 29. typical and maximum current consumption from the v dda supply . . . . . . . . . . . . . . . . . . 63 table 30. typical and maximum v dd consumption in stop and standby modes. . . . . . . . . . . . . . . . 63 table 31. typical and maximum v dda consumption in stop and standby modes. . . . . . . . . . . . . . . 64 table 32. typical and maximum current consumption from v bat supply. . . . . . . . . . . . . . . . . . . . . . 64 table 33. typical current consumption in run mode, code with data processing running from flash66 table 34. typical current consumption in sleep mode, code running from flash or ram . . . . . . . . . 67 table 35. switching output i/o current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 36. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 table 37. low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 38. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 39. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 40. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 41. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 42. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 43. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 44. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 45. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 46. flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 47. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
list of tables stm32f302x6 stm32f302x8 6/135 docid025147 rev 3 table 48. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 49. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 50. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 51. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 52. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 table 53. output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 54. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 55. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 56. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 table 57. iwdg min/max timeout period at 40 khz (lsi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 58. wwdg min-max timeout value @72 mhz (pclk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 59. i2c analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 table 60. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 table 61. i2s characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 62. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 63. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 table 64. usb: full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 table 65. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 66. maximum adc rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 67. adc accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 table 68. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 table 69. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 70. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 table 71. comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 72. operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 table 73. ts characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 table 74. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 table 75. v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 table 76. wlcsp49 wafer level chip size package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 118 table 77. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 121 table 78. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . 124 table 79. 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data . . . . . . . . . . . . 127 table 80. package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 table 81. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 table 82. document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
docid025147 rev 3 7/135 stm32f302x6 stm32f302x8 list of figures 7 list of figures figure 1. ds9896 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 3. infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 4. stm32f302x6/8 ufqfn32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 5. stm32f302x6/8 lqfp48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 6. stm32f302x6/8 lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 7. stm32f302x6/8 wlcsp49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 8. stm32f302x6/8 memory mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 9. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 10. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 11. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 12. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 13. typical v bat current consumption (lse and rtc on/lsedrv[1:0] = ?00?) . . . . . . . . . . . 65 figure 14. high-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 figure 15. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 16. typical application with an 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 figure 17. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 18. hsi oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 79 figure 19. tc and tta i/o input characteristics - cmos port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 figure 20. tc and tta i/o input characteristics - ttl port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 figure 21. five volt tolerant (ft and ftf) i/o input characteristics - cmos port. . . . . . . . . . . . . . . . . 86 figure 22. five volt tolerant (ft and ftf) i/o input characteristics - ttl port . . . . . . . . . . . . . . . . . . . 87 figure 23. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 24. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 figure 25. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 figure 26. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 figure 27. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 figure 28. i 2 s slave timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 figure 29. i 2 s master timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 figure 30. usb timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 figure 31. adc typical current consumption in single-ended and differential modes . . . . . . . . . . . . 102 figure 32. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 33. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 34. 12-bit buffered /non-buffered dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 figure 35. opamp voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 figure 36. wlcsp49 wafer level chip size package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 figure 37. wlcsp49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 figure 38. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . 120 figure 39. lqfp64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1 figure 40. lqfp64 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 figure 41. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 123 figure 42. lqfp48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 figure 43. lqfp48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 figure 44. 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5) . . . . . . . . . . . . . . . . . . . . 127 figure 45. ufqfpn32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 figure 46. ufqfpn32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
docid025147 rev 3 8/135 stm32f302x6 stm32f302x8 introduction 51 1 introduction this datasheet provides the ordering information and mechanical device characteristics of the stm32f302x6/8 microcontrollers. this datasheet should be read in conjunction with the stm32f302xx and stm32f302x6/8 advanced arm ? -based 32-bit mcus reference manual (rm0365). the reference manual is available from the stmicroelectronics website www.st.com . for information on the arm ? cortex ? -m4 core, please refer to the cortex ? -m4 technical reference manual, available from arm website www.arm.com.
description stm32f302x6 stm32f302x8 9/135 docid025147 rev 3 2 description the stm32f302x6/8 family is based on the high-performance arm cortex -m4 32-bit risc core operating at a frequency of up to 72 mhz and embedding a floating point unit (fpu). the family incorporates high-speed embedded memories (up to 64 kbyte of flash memory, 16 kbytes of sram), and an extensive range of enhanced i/os and peripherals connected to two apb buses. the devices offer a fast 12-bit adc (5 msps), three comparators, an operational amplifier, up to 18 capacitive sensing channels, one dac channel, a low-power rtc, one general- purpose 32-bit timer, one timer dedicated to motor control, and up to three general-purpose 16-bit timers, and one timer to drive the dac. they also feature standard and advanced communication interfaces: three i 2 cs, up to three usarts, up to two spis with multiplexed full-duplex i2s, a usb fs device, a can, and an infrared transmitter. the stm32f302x6/8 family operates in the ?40 to +85c and ?40 to +105c temperature ranges from at a 2.0 to 3.6 v power supply. a comprehensive set of power-saving mode allows the design of low-power applications. the stm32f302x6/8 family offers devices in 32-, 48-, 49- and 64-pin packages. the set of included peripherals changes with the device chosen.
docid025147 rev 3 10/135 stm32f302x6 stm32f302x8 description 51 table 1. stm32f302x6/8 device features and peripheral counts peripheral stm32f302kx stm32f302cx stm32f302rx flash (kbytes) 32 64 32 64 32 64 sram (kbytes) 16 timers advanced control 1 (16-bit) general purpose 3 (16-bit) 1 (32 bit) basic 1 systick timer 1 watchdog timers (independent, window) 2 pwm channels (all) (1) 16 18 pwm channels (except complementary) 10 12 comm. interfaces spi/i2s 2 i 2 c3 usart 2 3 usb 2.0 fs 1 can 2.0b 1 gpios normal i/os (tc, tta) 9 20 26 5-volt tolerant i/os (ft, ft1) 15 17 25 dma channels 7 capacitive sensing channels 13 17 18 12-bit adc number of channels 1 8 1 11 1 15 12-bit dac channels 1 analog comparator 2 3 3 operational amplifier 1 cpu frequency 72 mhz operating voltage 2.0 to 3.6 v operating temperature ambient operating temperature: - 40 to 85 c / - 40 to 105 c junction temperature: - 40 to 125 c packages ufqfpn32 lqfp48, wlcsp49 lqfp64 1. this total number considers also the pwms generated on the complementary output channels.
description stm32f302x6 stm32f302x8 11/135 docid025147 rev 3 figure 1. ds9896 block diagram 1. af: alternate function on i/o pins. 069 7rxfk6hqvlqj &rqwuroohu $+%ghfrghu 7,0(5 &kdqqhov&rps &kdqqho%5.dv$) 7,0(5 7,0(53:0 86$57 5;7;&76576 6pduw&dugdv$) :lq:$7&+'2* %xv0dwul[ )38 &ruwh[0&38 ) pd[ 0+] 19,& *3'0$ fkdqqhov )odvk lqwhuidfh 2%/ )/$6+.% elwv -7567 -7', -7&.6:&/. -7066:',2 -7'2 $v$) 3rzhu 9rowdjhuhj 9wr9 9 '' 6xsso\ 6xshuylvlrq 3253'5 39' 325 5hvhw ,qw 9 '',2 wr9 9 66 15(6(7 9 ''$ 9 66$ ,qg:'*. 6wdqge\ lqwhuidfh 3// #9 '',2 #9 ''$ ;7$/26& 0+] 5hvhw  forfn frqwuro $+%3&/. $3%3&/. $3%3&/. $+% $3% $+% $3% &5& $3%) pd[  0+] $3%i pd[  0+] *3,23257$ *3,23257% *3,23257& *3,23257' 26&b,1 26&b287 63,,6 6&/6'$60%$dv$) 86$57 6&/6'$60%$dv$) 86$57 5&/6 7,0(5 63,,6 elw'$& ,) #9 ''$ 7,0(5 elw3:0 3$>@ 3%>@ 3&>@ 026,0,62 6&.166dv$) &kdqqhov(75dv$) 86%b'386%b'0 '$&b&+ +&/. )&/. 86$57&/. 5&+60+] 65$0 .% 6:-7$* 73,8 ,exv 'exv 6\vwhp elw$'& 7hpsvhqvru 9 5()  9 5() 7,0(5 (;7,7 :.83 ;;$) &kdqqho&rps &kdqqho%5.dv$) &kdqqho&rps &kdqqho%5.dv$) &kdqqhov &rpsfkdqqhov (75%5.dv$) *3,23257) 3'>@ 65$0iru86%dqg &$1.% 3)>@ ,) ,&&/. $'&6$5 &/. #9 '',2 #9 ''$ #96: ;7$/n+] 26&b,1 26&b287 9 %$7  9wr9 57& $:8 %dfnxs 5hj %\wh %dfnxs lqwhuidfh $17,7$03 ,& ,& e[&$1 86%)6 2s$ps #9 ''$ ,1[[287[[ ,17(5)$&( 6<6&)*&7/ *3&rpsdudwru *3&rpsdudwru *3&rpsdudwru &$17;&$15; 5;7;&76576dv$) 5;7;&76576dv$) #9 ''$ ;[,qv287vdv$) *urxsvri fkdqqhovdv$) 026,0,62 6&.166dv$) 6&/6'$60%$dv$) ,&
docid025147 rev 3 12/135 stm32f302x6 stm32f302x8 functional overview 51 3 functional overview 3.1 arm ? cortex ? -m4 core with fpu, embedded flash and sram the arm cortex -m4 processor with fpu is the latest generation of arm processors for embedded systems. it was developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. the arm cortex -m4 32-bit risc processor with fpu features exceptional code- efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the processor supports a set of dsp instructions which allow efficient signal processing and complex algorithm execution. its single-precision fpu speeds up software development by using metalanguage development tools while avoiding saturation. with its embedded arm core, the stm32f302x6/8 family is compatible with all arm tools and software. figure 1 shows the general block diagram of the stm32f302x6/8 family devices. 3.2 memories 3.2.1 embedded flash memory all stm32f302x6/8 devices feature up to 64 kbytes of embedded flash memory available for storing programs and data. the flash memory access time is adjusted to the cpu clock frequency (0 wait state from 0 to 24 mhz, 1 wait state from 24 to 48 mhz and 2 wait states above). 3.2.2 embedded sram stm32f302x6/8 devices feature 16 kbytes of embedded sram. 3.3 boot modes at startup, boot0 pin and boot1 option bit are used to select one of three boot options: x boot from user flash x boot from system memory x boot from embedded sram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1 (pa9/pa10), usart2 (pa2/pa3) or usb (pa11/pa12) through dfu (device firmware upgrade).
functional overview stm32f302x6 stm32f302x8 13/135 docid025147 rev 3 3.4 cyclic redundancy check calculation unit (crc) the crc (cyclic redundancy check) calculation unit is used to get a crc code using a configurable generator polynomial value and size. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 power management 3.5.1 power supply schemes x v ss , v dd = 2.0 to 3.6 v : external power supply for i/os and the internal regulator. it is provided externally through v dd pins. x v ssa , v dda = 2.0 to 3.6 v: external analog power supply for adc, dac, comparators, operational amplifier, reset blocks, rcs and pll. the minimum voltage to be applied to v dda differs from one analog peripheral to another. table 2 provides the summary of the v dda ranges for analog peripherals. the v dda voltage level must always be greater than or equal to the v dd voltage level and must be provided first. x v bat = 1.65 to 3.6 v: power supply for rtc, external clock 32 khz oscillator and backup registers (through power switch) when v dd is not present. 3.5.2 power supply supervisor the device has an integrated power-on reset (por) and power-down reset (pdr) circuits. they are always active, and ensure proper operation above a threshold of 2 v. the device remains in reset mode when the monitored supply voltage is below a specified threshold, v por/pdr , without the need for an external reset circuit. x the por monitors only the v dd supply voltage. during the startup phase it is required that v dda should arrive first and be greater than or equal to v dd . x the pdr monitors both the v dd and v dda supply voltages, however the v dda power supply supervisor can be disabled (by programming a dedicated option bit) to reduce the power consumption if the application design ensures that v dda is higher than or equal to v dd . the device features an embedded programmable voltage detector (pvd) that monitors the v dd power supply and compares it to the v pvd threshold. an interrupt can be generated when v dd drops below the v pvd threshold and/or when v dd is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. table 2. external analog supply values for analog peripherals analog peripheral minimum v dda supply maximum v dda supply adc/comp 2.0 v 3.6 v dac/opamp 2.4 v 3.6 v
docid025147 rev 3 14/135 stm32f302x6 stm32f302x8 functional overview 51 3.5.3 voltage regulator the regulator has three operation modes: main (mr), low-power (lpr), and power-down. x the mr mode is used in the nominal regulation mode (run) x the lpr mode is used in stop mode. x the power-down mode is used in standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. the voltage regulator is always enabled after reset. it is disabled in standby mode. 3.5.4 low-power modes the stm32f302x6/8 supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: x sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. x stop mode stop mode achieves the lowest power consumption while retaining the content of sram and registers. all clocks in the 1.8 v domain are stopped, the pll, the hsi rc and the hse crystal oscillators are disabled. the voltage regulator can also be put either in normal or in low-power mode. the device can be woken up from stop mode by any of the exti line. the exti line source can be one of the 16 external lines, the pvd output, the usb wakeup, the rtc alarm, compx, i2c or usartx. x standby mode the standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire 1.8 v domain is powered off. the pll, the hsi rc and the hse crystal oscillators are also switched off. after entering standby mode, sram and register contents are lost except for registers in the backup domain and standby circuitry. the device exits standby mode when an external reset (nrst pin), an iwdg reset, a rising edge on the wkup pin, or an rtc alarm occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering stop or standby mode. 3.6 interconnect matrix several peripherals have direct connections between them. this allows autonomous communication between peripherals, saving cpu resources thus power supply consumption. in addition, these hardware connections allow fast and predictable latency.
functional overview stm32f302x6 stm32f302x8 15/135 docid025147 rev 3 note: for more details about the interconnect actions, please refer to the corresponding sections in the stm32f302xx and stm32f302x6/8 reference manual rm0365. table 3. stm32f302x6/8 peripheral interconnect matrix interconnect source interconnect destination interconnect action timx timx timers synchronization or chaining adc1 dac1 conversion triggers dma memory to memory transfer trigger compx comparator output blanking compx timx timer input: ocref_clr input, input capture adc1 tim1 timer triggered by analog watchdog gpio rtcclk hse/32 mc0 tim16 clock source used as input channel for hsi and lsi calibration css cpu (hard fault) compx pvd gpio tim1 tim15, 16, 17 timer break gpio timx external trigger, timer break adc1 dac1 conversion external trigger dac1 compx comparator inverting input
docid025147 rev 3 16/135 stm32f302x6 stm32f302x8 functional overview 51 3.7 clocks and startup system clock selection is performed on startup, however the internal rc 8 mhz oscillator is selected as default cpu clock on reset. an external 4-32 mhz clock can be selected, in which case it is monitored for failure. if failure is detected, the system automatically switches back to the internal rc oscillator. a software interrupt is generated if enabled. similarly, full interrupt management of the pll clock entry is available when necessary (for example with failure of an indirectly used external oscillator). several prescalers allow to configure the ahb frequency, the high speed apb (apb2) and the low speed apb (apb1) domains. the maximum frequency of the ahb and the high speed apb domains is 72 mhz, while the maximum allowed frequency of the low speed apb domain is 36 mhz. the advanced clock controller clocks the core and all peripherals using a single crystal or oscillator. to achieve audio class performance, an audio crystal can be used.
functional overview stm32f302x6 stm32f302x8 17/135 docid025147 rev 3 figure 2. clock tree  0+] +6(26&  26&b,1  26&b287 26&b,1 26&b287  0+] +6,5& ,:'*&/. wr,:'* 3// [[ [  3//08/ 0&2 $+%  3//&/. +6, +6( $3% suhvfdohu  +&/. 3//&/. wr$+%exvfruh phpru\dqg'0$ /6( /6, +6, +6, +6( wr57& 3//65& 6: 0&2  6<6&/. 57&&/. 57&6(/>@ 6<6&/. wr7,0  ,i $3%suhvfdohu  [hovh[ )/,7)&/. wr)odvksurjudpplqjlqwhuidfh /6, wr,&[ [  wr86$57 [  /6( +6, 6<6&/.  3&/. 6<6&/. +6, 3&/. 069 wr,6[ [  wrfruwh[6\vwhpwlphu )+&/.&ruwh[iuhh uxqqlqjforfn wr$3%shulskhudov $+% suhvfdohu  &66   /6(26& n+]  /6,5& n+] $3% suhvfdohu   ,i $3%suhvfdohu  [hovh[ 3&/. wr$3%shulskhudov 7,0 $'& 3uhvfdohu  wr$'& $'& 3uhvfdohu   ,665& 6<6&/. ([wforfn ,6b&.,1 [ 86%&/. wr86%lqwhuidfh 86% suhvfdohu  0dlqforfn rxwsxw   0&235( 3//12',9
docid025147 rev 3 18/135 stm32f302x6 stm32f302x8 functional overview 51 3.8 general-purpose inputs/outputs (gpios) each of the gpio pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions. all gpios are high current capable except for analog inputs. the i/os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the i/os registers. fast i/o handling allows i/o toggling up to 36 mhz. 3.9 direct memory access (dma) the flexible general-purpose dma is able to manage memory-to-memory, peripheral-to- memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each of the 7 dma channels is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: spi, i 2 c, usart, timers, dac and adc. 3.10 interrupts and events 3.10.1 nested vectored interrupt controller (nvic) the stm32f302x6/8 devices embed a nested vectored interrupt controller (nvic) able to handle up to 60 maskable interrupt channels and 16 priority levels. the nvic benefits are the following: x closely coupled nvic gives low latency interrupt processing x interrupt entry vector table address passed directly to the core x closely coupled nvic core interface x allows early processing of interrupts x processing of late arriving higher priority interrupts x support for tail chaining x processor state automatically saved x interrupt entry restored on interrupt exit with no instruction overhead the nvic hardware block provides flexible interrupt management features with minimal interrupt latency.
functional overview stm32f302x6 stm32f302x8 19/135 docid025147 rev 3 3.11 fast analog-to-digital converter (adc) an analog-to-digital converter, with selectable resolution between 12 and 6 bit, is embedded in the stm32f302x6/8 family devices. the adc has up to 15 external channels performing conversions in single-shot or scan modes. channels can be configured to be either single- ended input or differential input. in scan mode, automatic conversion is performed on a selected group of analog inputs. additional logic functions embedded in the adc interface allow: x simultaneous sample and hold x single-shunt phase current reading techniques. the adc can be served by the dma controller. three analog watchdogs are available. the analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the general-purpose timers (timx) and the advanced-control timer (tim1) can be internally connected to the adc start trigger and injection trigger, respectively, to allow the application to synchronize a/d conversion and timers. 3.11.1 temperature sensor the temperature sensor (ts) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connected to the adc1_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the temperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. 3.11.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to the adc1_in18 input channel. the precise voltage of v refint is individually measured for each part by st during production test and stored in the system memory area. it is accessible in read-only mode.
docid025147 rev 3 20/135 stm32f302x6 stm32f302x8 functional overview 51 3.11.3 v bat battery voltage monitoring this embedded hardware feature allows the application to measure the v bat battery voltage using the internal adc channel adc1_in17. as the v bat voltage may be higher than v dda , and thus outside the adc input range, the v bat pin is internally connected to a bridge divider by 2. as a consequence, the converted digital value is half the v bat voltage. 3.12 digital-to-analog converter (dac) one 12-bit buffered dac channel (dac1_out1) can be used to convert digital signals into analog voltage signal outputs. the chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. this digital interface supports the following features: x one dac output channel x 8-bit or 12-bit monotonic output x left or right data alignment in 12-bit mode x synchronized update capability x noise-wave generation x triangular-wave generation x dma capability x external triggers for conversion 3.13 operational amplifier (opamp) the stm32f302x6/8 embeds one operational amplifier with external or internal follower routing and pga capability (or even amplifier and filter capability with external components). when the operational amplifier is selected, an external adc channel is used to enable output measurement. the operational amplifier features: x 8.2 mhz bandwidth x 0.5 ma output capability x rail-to-rail input/output x in pga mode, the gain can be programmed to be 2, 4, 8 or 16.
functional overview stm32f302x6 stm32f302x8 21/135 docid025147 rev 3 3.14 ultra-fast comparators (comp) the stm32f302x6/8 devices embed up to three ultra-fast rail-to-rail comparators which offer the features below: x programmable internal or external reference voltage x selectable output polarity. the reference voltage can be one of the following: x external i/o x dac output x internal reference voltage or submultiple (1/4, 1/2, 3/4). refer to table 26: embedded internal reference voltage for the value and precision of the internal reference voltage. all comparators can wake up from stop mode, and also generate interrupts and breaks for the timers. 3.15 timers and watchdogs the stm32f302x6/8 includes advanced control timer, up to general-purpose timers, basic timer, two watchdog timers and a systick timer. the table below compares the features of the advanced control, general purpose and basic timers. table 4. timer feature comparison timer type timer counter resolution counter type prescaler factor dma request generation capture/ compare channels complementary outputs advanced control tim1 (1) 16-bit up, down, up/down any integer between 1 and 65536 yes 4 yes general- purpose tim2 32-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim15 (1) 16-bit up any integer between 1 and 65536 yes 2 1 tim16 (1) , tim17 (1) 16-bit up any integer between 1 and 65536 yes 1 1 basic tim6 16-bit up any integer between 1 and 65536 yes 0 no 1. tim1/15/16/17 can be clocked from the pll running at 144 mhz when the system clock source is the pll and ahb or apb2 subsystem clocks are not divided by more than 2 cumulatively.
docid025147 rev 3 22/135 stm32f302x6 stm32f302x8 functional overview 51 3.15.1 advanced timer (tim1) the advanced-control timer can each be seen as a three-phase pwm multiplexed on 6 channels. they have complementary pwm outputs with programmable inserted dead- times. they can also be seen as complete general-purpose timers. the 4 independent channels can be used for: x input capture x output compare x pwm generation (edge or center-aligned modes) with full modulation capability (0- 100%) x one-pulse mode output in debug mode, the advanced-control timer counter can be frozen and the pwm outputs disabled to turn off any power switches driven by these outputs. many features are shared with those of the general-purpose tim timers (described in section 3.15.2 using the same architecture, so the advanced-control timers can work together with the tim timers via the timer link feature for synchronization or event chaining. 3.15.2 general-purpose timers (tim2, tim15, tim16, tim17) there are up to four synchronizable general-purpose timers embedded in the stm32f302x6/8 (see table 4 for differences). each general-purpose timer can be used to generate pwm outputs, or act as a simple time base. tim2 tim2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler it features 4 independent channels for input capture/output compare, pwm or one-pulse mode output. it can work together, or with the other general-purpose timers via the timer link feature for synchronization or event chaining. the counter can be frozen in debug mode. it has independent dma request generation and supports quadrature encoders. tim15, tim16 and tim 17 these three timers general-purpose timers with mid-range features: they have 16-bit auto-reload upcounters and 16-bit prescalers. x tim15 has 2 channels and 1 complementary channel x tim16 and tim17 have 1 channel and 1 complementary channel all channels can be used for input capture/output compare, pwm or one-pulse mode output. the timers can work together via the timer link feature for synchronization or event chaining. the timers have independent dma request generation. the counters can be frozen in debug mode.
functional overview stm32f302x6 stm32f302x8 23/135 docid025147 rev 3 3.15.3 basic timer (tim6) this timer is mainly used for dac trigger generation. it can also be used as a generic 16-bit time base. 3.15.4 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 40 khz internal rc and as it operates independently from the main clock, it can operate in stop and standby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. it is hardware or software configurable through the option bytes. the counter can be frozen in debug mode. 3.15.5 window watchdog (wwdg) the window watchdog is based on a 7-bit downcounter that can be set as free running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrupt capability and the counter can be frozen in debug mode. 3.15.6 systick timer this timer is dedicated to real-time operating systems, but could also be used as a standard down counter. it features: x a 24-bit down counter x autoreload capability x maskable system interrupt generation when the counter reaches 0. x programmable clock source 3.16 real-time clock (rtc) and backup registers the rtc and the 20 backup registers are supplied through a switch that takes power from either the v dd supply when present or the vbat pin. the backup registers are five 32-bit registers used to store 20 bytes of user application data when v dd power is not present. they are not reset by a system or power reset, or when the device wakes up from standby mode.
docid025147 rev 3 24/135 stm32f302x6 stm32f302x8 functional overview 51 the rtc is an independent bcd timer/counter. it supports the following features: x calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in bcd (binary-coded decimal) format. x automatic correction for 28, 29 (leap year), 30, and 31 days of the month. x two programmable alarms with wake up from stop and standby mode capability. x on-the-fly correction from 1 to 32767 rtc clock pulses. this can be used to synchronize it with a master clock. x digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. x two anti-tamper detection pins with programmable filter. the mcu can be woken up from stop and standby modes on tamper event detection. x timestamp feature which can be used to save the calendar content. this function can be triggered by an event on the timestamp pin, or by a tamper event. the mcu can be woken up from stop and standby modes on timestamp event detection. x 17-bit auto-reload counter for periodic interrupt with wakeup from stop/standby capability. the rtc clock sources can be: x a 32.768 khz external crystal x a resonator or oscillator x the internal low-power rc oscillator (typical frequency of 40 khz) x the high-speed external clock divided by 32.
functional overview stm32f302x6 stm32f302x8 25/135 docid025147 rev 3 3.17 inter-integrated circuit interfaces (i 2 c) the devices feature three i 2 c bus interfaces which can operate in multimaster and slave mode. each i2c interface can support standard (up to 100 khz), fast (up to 400 khz) and fast mode + (up to 1 mhz) modes. all i 2 c interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). they also include programmable analog and digital noise filters. in addition, it provides hardware support for smbus 2.0 and pmbus 1.1: arp capability, host notify protocol, hardware crc (pec) generation/verification, timeouts verifications and alert protocol management. it also has a clock domain independent from the cpu clock, allowing the i2cx (x=1,3) to wake up the mcu from stop mode on address match. the i2c interfaces can be served by the dma controller. refer to table 6 for the features available in i2c1, i2c2 and i2c3. table 5. comparison of i2c analog and digital filters analog filter digital filter pulse width of suppressed spikes t 50 ns programmable length from 1 to 15 i2c peripheral clocks benefits available in stop mode 1. extra filtering capability vs. standard requirements. 2. stable length drawbacks variations depending on temperature, voltage, process wakeup from stop on address match is not available when digital filter is enabled. table 6. stm32f302x6/8 i 2 c implementation i2c features (1) 1. x = supported. i2c1 i2c2 i2c3 7-bit addressing mode x x x 10-bit addressing mode x x x standard mode (up to 100 kbit/s) x x x fast mode (up to 400 kbit/s) x x x fast mode plus with 20ma output drive i/os (up to 1 mbit/s) x x x independent clock x x x smbus x x x wakeup from stop x x x
docid025147 rev 3 26/135 stm32f302x6 stm32f302x8 functional overview 51 3.18 universal synchronous/asynchronous receiver transmitter (usart) the stm32f302x6/8 devices have three embedded universal synchronous receiver transmitters (usart1, usart2 and usart3). the usart interfaces are able to communicate at speeds of up to 9 mbit/s. all usarts support hardware management of the cts and rts signals, multiprocessor communication mode, single-wire half-duplex communication mode and synchronous mode. usart1 supports smartcard mode, irda sir endec, lin master capability and autobaudrate detection. all usart interfaces can be served by the dma controller. refer to table 7 for the features available in all usarts interfaces. 3.19 serial peripheral interfaces (spi)/inter-integrated sound interfaces (i2s) two spi interfaces (spi2 and spi3) allow communication up to 18 mbit/s in slave and master modes in full-duplex and simplex modes. the 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. two standard i2s interfaces (multiplexed with spi2 and spi3) are available, that can be operated in master or slave mode. these interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. audio sampling frequencies from 8 khz up to 192 khz are supported. when either or both of the i2s interfaces is/are configured in master table 7. usart features usart modes/features (1) 1. x = supported. usart1 usart2 usart3 hardware flow control for modem x x x continuous communication using dma x x x multiprocessor communication x x x synchronous mode x x x smartcard mode x - - single-wire half-duplex communication x x x irda sir endec block x - - lin mode x - - dual clock domain and wakeup from stop mode x - - receiver timeout interrupt x - - modbus communication x - - auto baud rate detection x - - driver enable x x x
functional overview stm32f302x6 stm32f302x8 27/135 docid025147 rev 3 mode, the master clock can be output to the external dac/codec at 256 times the sampling frequency. refer to table 8 for the features available in spi2 and spi3. 3.20 controller area network (can) the can is compliant with specifications 2.0a and b (active) with a bit rate up to 1 mbit/s. it can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. it has three transmit mailboxes, two receive fifos with 3 stages and 14 scalable filter banks. 3.21 universal serial bus (usb) the stm32f302x6 stm32f302x8 embeds a full-speed usb device peripheral compliant with the usb specification version 2.0. the usb interface implements a full-speed (12 mbit/s) function interface with added support for usb 2.0 link power management. it has software-configurable endpoint setting with packet memory up-to 1 kb (the last 256 bytes are used for can peripheral if enabled) and suspend/resume support. it requires a precise 48 mhz clock which is generated from the internal main pll (the clock source must use an hse crystal oscillator). 3.22 touch sensing controller (tsc) the stm32f302x6/8 devices provide a simple solution for adding capacitive sensing functionality to any application. these devices offer up to 18 capacitive sensing channels distributed over 6 analog i/o groups. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (for example glass, plastic). the capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. to limit the cpu bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. table 8. stm32f302x6/8 spi/i2s implementation spi features (1) 1. x = supported. spi2 spi3 hardware crc calculation x x rx/tx fifo x x nss pulse mode x x i2s mode x x ti mode x x
docid025147 rev 3 28/135 stm32f302x6 stm32f302x8 functional overview 51 table 9. capacitive sensing gpios available on stm32f302x6/8 devices group capacitive sensing signal name pin name 1 tsc_g1_io1 pa0 tsc_g1_io2 pa1 tsc_g1_io3 pa2 tsc_g1_io4 pa3 2 tsc_g2_io1 pa4 tsc_g2_io2 pa5 tsc_g2_io3 pa6 tsc_g2_io4 pa7 3 tsc_g3_io1 pc5 tsc_g3_io2 pb0 tsc_g3_io3 pb1 tsc_g3_io4 pb2 4 tsc_g4_io1 pa9 tsc_g4_io2 pa10 tsc_g4_io3 pa13 tsc_g4_io4 pa14 5 tsc_g5_io1 pb3 tsc_g5_io2 pb4 tsc_g5_io3 pb6 tsc_g5_io4 pb7 6 tsc_g6_io1 pb11 tsc_g6_io2 pb12 tsc_g6_io3 pb13 tsc_g6_io4 pb14 table 10. no. of capacitive sensing channels available on stm32f302x6/8 devices analog i/o group number of capacitive sensing channels stm32f302rx stm32f302cx stm32f302kx g1 3 3 3 g2 3 3 3 g3 3 2 1 g4 3 3 3 g5 3 3 3
functional overview stm32f302x6 stm32f302x8 29/135 docid025147 rev 3 3.23 infrared transmitter the stm32f302x6/8 devices provide an infrared transmitter solution. the solution is based on internal connections between tim16 and tim17 as shown in the figure below. tim17 is used to provide the carrier frequency and tim16 provides the main signal to be sent. the infrared output signal is available on pb9 or pa13. to generate the infrared remote control signals, tim16 channel 1 and tim17 channel 1 must be properly configured to generate correct waveforms. all standard ir pulse modulation modes can be obtained by programming the two timers output compare channels. figure 3. infrared transmitter g6 3 3 0 number of capacitive sensing channels 18 17 13 table 10. no. of capacitive sensing channels available on stm32f302x6/8 devices analog i/o group number of capacitive sensing channels stm32f302rx stm32f302cx stm32f302kx 7,0(5 iruhqyhors 7,0(5 irufduulhu 2& 2& 3%3$ 069
docid025147 rev 3 30/135 stm32f302x6 stm32f302x8 functional overview 51 3.24 development support 3.24.1 serial wire jtag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag tms and tck pins are shared respectively with swdio and swclk and a specific sequence on the tms pin is used to switch between jtag-dp and sw-dp.
pinouts and pin description stm32f302x6 stm32f302x8 31/135 docid025147 rev 3 4 pinouts and pin description figure 4. stm32f302x6/8 ufqfn32 pinout figure 5. stm32f302x6/8 lqfp48 pinout                           8)4)1 069 9''b 3)26&b,1 3)26&b287 1567 9''$95() 966$95() 3$ 3$ 966b %227 3% 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3$ 3$ 3$ 9''b 3$ 3$ 3$ 3$ 3$ 3$ 3% 966b        3$ 3% 3%        966b %227 3%                     3% 3% 9''b 966b 3$ 3% 3% 3% 3% 3% 966b 3% 9''b             9%$7 3&26&b,1 3&26&b287 1567 966$95() 9''$ 3$ 3$ 3$ 9''b 3)26&b,1 3)26&b287 3&   069 /4)3 3$ 3$ 3$ 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 3$ 3$
docid025147 rev 3 32/135 stm32f302x6 stm32f302x8 pinouts and pin description 51 figure 6. stm32f302x6/8 lqfp64 pinout                                                                 9%$7 3&26&b,1 3&26&b287 1567 3& 3& 3& 3& 966$95() 9''$ 3$ 3$ 3$ 9''b 3' 3& 3& 3& 9''b 966b 3& 3& 3& 3% 966b 3$ 9''b 3& 3& 3% 3% 3)26&b287 3)26&b,1 3& 966b 3% 966b 9''b ,1&0 dl9 3$ 3$ 3$ 3$ 3$ 3$ 3& 3% 3% 3% 3$ 3$ 3$ 3$ 3% 3% 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$
pinouts and pin description stm32f302x6 stm32f302x8 33/135 docid025147 rev 3 figure 7. stm32f302x6/8 wlcsp49 ballout 069 $ % ( ' & ) * 3& 9'' 1567 966 3$ 9''$ 9%$7 3& 966$ 95() 3$ 3$ %227 3% 3% 3% 3% 3% 3% 3$ 3$ 9'' 3$ 966 3$ 3%  3$ 3% 3$ 3% 3$  3% 9'' 966 3% 3$ 3$  3% 3%        3% 3% 3& 3$ 3$ 3$ 3$ 3% 1rwfrqqhfwhg 3) 26&b287 3) 26&b,1
docid025147 rev 3 34/135 stm32f302x6 stm32f302x8 pinouts and pin description 51 table 11. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input only pin i/o input / output pin i/o structure ft 5 v tolerant i/o ftf 5 v tolerant i/o, i2c fm+ option tta 3.3 v tolerant i/o tt 3.3 v tolerant i/o tc standard 3.3v i/o b dedicated boot0 pin rst bi-directional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabled through peripheral registers
pinouts and pin description stm32f302x6 stm32f302x8 35/135 docid025147 rev 3 table 12. stm32f302x6/8 pin definitions pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64 - b6 1 1 vbat s - backup power supply -d52 2 pc13 (1) tamper1 wkup2 (pc13) i/o tc (1) tim1_ch1n wkup2, rtc_tamp1, rtc_ts, rtc_out -c73 3 pc14 (1) osc32_in (pc14) i/o tc (1) osc32_in -c64 4 pc15 (1) osc32_out (pc14) i/o tc (1) osc32_out 2 d7 5 5 pf0 osc_in (pf0) i/o ftf i2c2_sda, spi2_nss/i2s2_ws, tim1_ch3n osc_in 3 d6 6 6 pf1 osc_out (pf1) o ftf i2c2_scl, spi2_sck/i2s2_ck osc_out 4 e7 7 7 nrst i/o rst device reset input/internal reset output (active low) - - - 8 pc0 i/o tta eventout, tim1_ch1 adc1_in6 - - - 9 pc1 i/o tta eventout, tim1_ch2 adc1_in7 - - - 10 pc2 i/o tta eventout, tim1_ch3 adc1_in8 - - - 11 pc3 i/o tta eventout, tim1_ch4, tim1_bkin2 adc1_in9 6 e6 8 12 vssa/vref- s - analog ground/negative reference voltage 5 a6 9 13 vdda/vref+ s - analog power supply/positive reference voltage
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 36/135 7 f6 10 14 pa0 -tamper2-wkup1 i/o tta tim2_ch1/tim2_etr, tsc_g1_io1, usart2_cts, eventout adc1_in1, rtc_tamp2, wkup1 8 g7 11 15 pa1 i/o tta rtc_refin, tim2_ch2, tsc_g1_io2, usart2_rts_de, tim15_ch1n, eventout adc1_in2 9 e5 12 16 pa2 i/o tta tim2_ch3, tsc_g1_io3, usart2_tx, comp2_out, tim15_ch1, eventout adc1_in3, comp2_inm 10 e4 13 17 pa3 i/o tta tim2_ch4, tsc_g1_io4, usart2_rx, tim15_ch2, eventout adc1_in4 - f7 - 18 vss_4 s - - f2 - 19 vdd_4 s - 11 g6 14 20 pa4 i/o tta (2) tsc_g2_io1, spi3_nss/i2s3_ws, usart2_ck, eventout adc1_in5, dac1_out1, comp2_inm, comp4_inm, comp6_inm 12 f5 15 21 pa5 i/o tta tim2_ch1/tim2_etr, tsc_g2_io2, eventout opamp2_vinm 13 f4 16 22 pa6 i/o tta (2) tim16_ch1, tsc_g2_io3, tim1_bkin, eventout adc1_in10, opamp2_vout 14 f3 17 23 pa7 i/o tta tim17_ch1, tsc_g2_io4, tim1_ch1n, eventout adc1_in15, comp2_inp, opamp2_vinp table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
pinouts and pin description stm32f302x6 stm32f302x8 37/135 docid025147 rev 3 - - - 24 pc4 i/o tt eventout, tim1_etr, usart1_tx - - - 25 pc5 i/o tta eventout, tim15_bkin, tsc_g3_io1, usart1_rx opamp2_vinm 15 g5 18 26 pb0 i/o tta tsc_g3_io2, tim1_ch2n, eventout adc1_in11, comp4_inp, opamp2_vinp - g4 19 27 pb1 i/o tta tsc_g3_io3, tim1_ch3n, comp4_out, eventout adc1_in12 - g3 20 28 pb2 i/o tta tsc_g3_io4, eventout comp4_inm - e3 21 29 pb10 i/o tt tim2_ch3, tsc_sync, usart3_tx, eventout - g2 22 30 pb11 i/o tta tim2_ch4, tsc_g6_io1, usart3_rx, eventout adc1_in14, comp6_inp 16 d3 23 31 vss_2 s - digital ground 17 b2 24 32 vdd_2 s - digital power supply - e2 25 33 pb12 i/o tt tsc_g6_io2, i2c2_smbal, spi2_nss/i2s2_ws, tim1_bkin, usart3_ck, eventout - g1 26 34 pb13 i/o tta tsc_g6_io3, spi2_sck/i2s2_ck, tim1_ch1n, usart3_cts, eventout adc1_in13 table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 38/135 - f1 27 35 pb14 i/o tta tim15_ch1, tsc_g6_io4, spi2_miso/i2s2ext_sd, tim1_ch2n, usart3_rts_de, eventout opamp2_vinp - e1 28 36 pb15 i/o tta rtc_refin, tim15_ch2, tim15_ch1n, tim1_ch3n, spi2_mosi/i2s2_sd, eventout comp6_inm - - - 37 pc6 i/o ft eventout, i2s2_mck, comp6_out - - - 38 pc7 i/o ft eventout, i2s3_mck - - - 39 pc8 i/o ft eventout - - - 40 pc9 i/o ftf eventout, i2c3_sda, i2sckin 18 d1 29 41 pa8 i/o ft mco, i2c3_scl, i2c2_smbal, i2s2_mck, tim1_ch1, usart1_ck, eventout 19 d2 30 42 pa9 i/o ftf i2c3_smbal, tsc_g4_io1, i2c2_scl, i2s3_mck, tim1_ch2, usart1_tx, tim15_bkin, tim2_ch3, eventout table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
pinouts and pin description stm32f302x6 stm32f302x8 39/135 docid025147 rev 3 20 c2 31 43 pa10 i/o ftf tim17_bkin, tsc_g4_io2, i2c2_sda, spi2_miso/i2s2ext_sd, tim1_ch3, usart1_rx, comp6_out, tim2_ch4, eventout 21 c1 32 44 pa11 i/o ft spi2_mosi/i2s2_sd, tim1_ch1n, usart1_cts, can_rx,tim1_ch4, tim1_bkin2, eventout usb_dm 22 c3 33 45 pa12 i/o ft tim16_ch1, i2sckin, tim1_ch2n, usart1_rts_de, comp2_out, can_tx, tim1_etr, eventout usb_dp 23 b3 34 46 pa13 i/o ft swdio, tim16_ch1n, tsc_g4_io3, ir-out, usart3_cts, eventout - b1 35 47 vss_3 s - digital ground - b2 36 48 vdd_3 s - digital power supply 24 a1 37 49 pa14 i/o ftf swclk-jtck, tsc_g4_io4, i2c1_sda, tim1_bkin, usart2_tx, eventout 25 a2 38 50 pa15 i/o ftf jtdi, tim2_ch1/tim2_etr, tsc_sync, i2c1_scl, spi3_nss/i2s3_ws, usart2_rx, tim1_bkin, eventout table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 40/135 - - - 51 pc10 i/o ft eventout, spi3_sck/i2s3_ck, usart3_tx - - - 52 pc11 i/o ft eventout, spi3_miso/i2s3ext_sd, usart3_rx - - - 53 pc12 i/o ft eventout, spi3_mosi/i2s3_sd, usart3_ck - - - 54 pd2 i/o ft eventout 26 a3 39 55 pb3 i/o ft jtdo-traceswo, tim2_ch2, tsc_g5_io1, spi3_sck/i2s3_ck, usart2_tx, eventout 27 a4 40 56 pb4 i/o ft jtrst, tim16_ch1, tsc_g5_io2, spi3_miso/i2s3ext_sd, usart2_rx, tim17_bkin, eventout 28 b4 41 57 pb5 i/o ft tim16_bkin, i2c1_smbal, spi3_mosi/i2s3_sd, usart2_ck, i2c3_sda, tim17_ch1, eventout 29 c4 42 58 pb6 i/o ftf tim16_ch1n, tsc_g5_io3, i2c1_scl, usart1_tx, eventout 30 d4 43 59 pb7 i/o ftf tim17_ch1n, tsc_g5_io4, i2c1_sda, usart1_rx, eventout table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
pinouts and pin description stm32f302x6 stm32f302x8 41/135 docid025147 rev 3 31 a5 44 60 boot0 i b boot memory selection - b5 45 61 pb8 i/o ftf tim16_ch1, tsc_sync, i2c1_scl, usart3_rx, can_rx, tim1_bkin, eventout - c5 46 62 pb9 i/o ftf tim17_ch1, i2c1_sda, ir-out, usart3_tx, comp2_out, can_tx, eventout 32 d3 47 63 vss_1 s - digital ground "1" b7 48 64 vdd_1 s - digital power supply 1. pc13, pc14 and pc15 are supplied through the power switch. since the switch sinks only a limited amount of current (3 ma), th e use of gpio pc13 to pc15 in output mode is limited: - the speed should not exceed 2 mhz with a maximum load of 30 pf - these gpios must not be used as current sources (e.g. to drive an led). after the first backup domain power-up, pc13, pc14 and pc15 operate as gpios. their function then depends on the content of the backup registers which is not reset by the main reset. for details on how to manage these gpios, refer to the battery backup domain and bkp register description secti ons in the rm0365 reference manual. 2. these gpios offer a reduced touch sensing sensitivity. it is thus recommended to use them as sampling capacitor i/o. table 12. stm32f302x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions additional functions uqfn32 wlcsp49 lqfp48 lqfp64
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 42/135 table 13. alternate functions for port a port & pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af12 af13 af14 af15 sys_af tim2/tim15/tim16 /tim17/event i2c3/tim1/tim2/tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/infrared spi2/i2s2/spi3/ i2s3/tim1/infrared usart1/usart2/usart3/ can/gpcomp6 i2c3/gpcomp2 /gpcomp4/gpcomp6 can/tim1/tim15 tim2/tim17 tim1 tim1 event pa0 - tim2_c h1/ tim2_e tr - tsc_g 1_io1 -- - usart 2_cts ------ event out pa1 rtc_re fin tim2_c h2 - tsc_g 1_io2 -- - usart 2_rts_ de ------- event out pa2 - tim2_c h3 - tsc_g 1_io3 -- - usart 2_tx comp2 _out tim15_ ch1 ----- event out pa3 - tim2_c h4 - tsc_g 1_io4 -- - usart 2_rx ------- event out pa4 - - - tsc_g 2_io1 -- spi3_nss/ i2s3_ws usart 2_ck ------- event out pa5 - tim2_c h1/ tim2_e tr - tsc_g 2_io2 -- - -------- event out pa6 - tim16_ ch1 - tsc_g 2_io3 - - tim1_bkin - - - - - - - - event out pa7 - tim17_ ch1 - tsc_g 2_io4 -- tim1_ch1 n -------- event out pa8 mco - - i2c3_s cl i2c2_s mbal i2s2_mc k tim1_ch1 usart 1_ck ------- event out
pinouts and pin description stm32f302x6 stm32f302x8 43/135 docid025147 rev 3 pa9 - - i2c3_s mbal tsc_g 4_io1 i2c2_s cl i2s3_mc k tim1_ch2 usart 1_tx -- tim2_c h3 ---- event out pa10 - tim17_ bkin tsc_g 4_io2 i2c2_s da spi2_mis o/i2s2ext _sd tim1_ch3 usart 1_rx comp6 _out tim2_c h4 ---- event out pa11 - - - - - spi2_mo si/i2s2_s d tim1_ch1 n usart 1_cts - can_r x - tim1_c h4 tim1_b kin2 -- event out pa12 - tim16_ ch1 - - - i2sckin tim1_ch2 n usart 1_rts_ de comp2 _out can_t x - tim1_e tr --- event out pa13 swdat- jtms tim16_ ch1n - tsc_g 4_io3 - ir-out - usart 3_cts ------- event out pa14 swclk- jtck - tsc_g 4_io4 i2c1_s da - tim1_bkin usart 2_tx ------- event out pa15 jtdi tim2_c h1/ tim2_e tr - tsc_s ync i2c1_s cl - spi3_nss/ i2s3_ws usart 2_rx - tim1_b kin ----- event out table 13. alternate functions for port a (continued) port & pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af12 af13 af14 af15 sys_af tim2/tim15/tim16 /tim17/event i2c3/tim1/tim2/tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/infrared spi2/i2s2/spi3/ i2s3/tim1/infrared usart1/usart2/usart3/ can/gpcomp6 i2c3/gpcomp2 /gpcomp4/gpcomp6 can/tim1/tim15 tim2/tim17 tim1 tim1 event
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 44/135 table 14. alternate functions for port b port & pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af12 af13 af14 af15 sys_af tim2/tim15/tim16 /tim17/event i2c3/tim1/tim2/tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/infrared spi2/i2s2/spi3/ i2s3/tim1/infrared usart1/usart2/usart3/ can/gpcomp6 i2c3/gpcomp2 /gpcomp4/gpcomp6 can/tim1/tim15 tim2/tim17 tim1 tim1 event pb0 - - - tsc_g 3_io2 -- tim1_c h2n -------- event out pb1 - - - tsc_g 3_io3 -- tim1_c h3n - comp4 _out ------ event out pb2 tsc_g 3_io4 -- event out pb3 jtdo- trace swo tim2_c h2 - tsc_g 5_io1 -- spi3_s ck/i2s3 _ck usart 2_tx ------- event out pb4 jtrst tim16_ ch1 - tsc_g 5_io2 -- spi3_mi so/i2s3 _sd usart 2_rx -- tim17_ bkin ---- event out pb5 - tim16_ bkin - i2c1_s mbal - spi3_m osi/i2s 3ext_sd usart 2_ck i2c3_s da - tim17_ ch1 ---- event out pb6 - tim16_ ch1n - tsc_g 5_io3 i2c1_s cl -- usart 1_tx ------- event out pb7 - tim17_ ch1n - tsc_g 5_io4 i2c1_s da -- usart 1_rx ------- event out pb8 - tim16_ ch1 - tsc_s ync i2c1_s cl -- usart 3_rx - can_r x -- tim1_b kin -- event out pb9 - tim17_ ch1 - i2c1_s da - ir-out usart 3_tx comp2 _out can_t x ----- event out
pinouts and pin description stm32f302x6 stm32f302x8 45/135 docid025147 rev 3 pb10 - tim2_c h3 - tsc_s ync --- usart 3_tx ------- event out pb11 - tim2_c h4 - tsc_g 6_io1 --- usart 3_rx ------- event out pb12 - - - tsc_g 6_io2 i2c2_s mbal spi2_n ss/i2s2 _ws tim1_b kin usart 3_ck ------- event out pb13 - - - tsc_g 6_io3 - spi2_s ck/ i2s2_c k tim1_c h1n usart 3_cts ------- event out pb14 - tim15_ ch1 - tsc_g 6_io4 - spi2_mi so/i2s2 ext_sd tim1_c h2n usart 3_rts_ de ------- event out pb15 rtc_r efin tim15_ ch2 tim15_ ch1n - tim1_c h3n spi2_m osi/ i2s2_s d --------- event out table 14. alternate functions for port b (continued) port & pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af12 af13 af14 af15 sys_af tim2/tim15/tim16 /tim17/event i2c3/tim1/tim2/tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/infrared spi2/i2s2/spi3/ i2s3/tim1/infrared usart1/usart2/usart3/ can/gpcomp6 i2c3/gpcomp2 /gpcomp4/gpcomp6 can/tim1/tim15 tim2/tim17 tim1 tim1 event
stm32f302x6 stm32f302x8 pinouts and pin description docid025147 rev 3 46/135 table 15. alternate functions for port c port & pin name af0 af1 af2 af3 af4 af5 af6 af7 sys_af tim2/tim15/ tim16/tim17/ event i2c3/tim1/tim2 /tim15 i2c3/tim15/ tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3 infrared spi2/i2s2/spi3/ i2s3/tim1/ infrared usart1/ usart2/ usart3/can/ gpcomp6 pc0 - eventout tim1_ch1 ----- pc1 - eventout tim1_ch2 ----- pc2 - eventout tim1_ch3 ----- pc3 - eventout tim1_ch4 --- tim1_bkin2 - pc4 - eventout tim1_etr ---- usart1_tx pc5 - eventout tim15_bkin tsc_g3_io1 --- usart1_rx pc6 - eventout ---- i2s2_mck comp6_out pc7 - eventout ---- i2s3_mck - pc8 - eventout ------ pc9 - eventout - i2c3_sda - i2sckin -- pc10 - eventout ---- spi3_sck/ i2s3_ck usart3_tx pc11 - eventout ---- spi3_miso/i2s3e xt_sd usart3_rx pc12 - eventout ---- spi3_mosi/i2s3_ sd usart3_ck pc13 ---- tim1_ch1n --- pc14 -------- pc15 --------
pinouts and pin description stm32f302x6 stm32f302x8 47/135 docid025147 rev 3 table 16. alternate functions for port d port & pin name af0 af1 af2 af3 af4 af5 af6 af7 sys_af tim2/tim15/ tim16/tim17/ event i2c3/tim1/tim2/ tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/ infrared spi2/i2s2/spi3/ i2s3/tim1/ infrared usart1/ usart2/ usart3/can/ gpcomp6 pd2 - eventout ------ table 17. alternate functions for port f port & pin name af0 af1 af2 af3 af4 af5 af6 af7 sys_af tim2/tim15/ tim16/tim17/ event i2c3/tim1/tim2/ tim15 i2c3/tim15/tsc i2c1/i2c2/tim1/ tim16/tim17 spi2/i2s2/ spi3/i2s3/ infrared spi2/i2s2/spi3/ i2s3/tim1/ infrared usart1/usar t2/usart3/ can/gpcomp6 pf0 -- - - i2c2_sda spi2_nss/ i2s2_ws tim1_ch3n - pf1 -- - - i2c2_scl spi2_sck/ i2s2_ck --
docid025147 rev 3 48/135 stm32f302x6 stm32f302x8 memory mapping 51 5 memory mapping figure 8. stm32f302x6/8 memory mapping [)))))))) [( [& [$ [ [ [ [ [         &ruwh[0 zlwk)38 ,qwhuqdo 3hulskhudov 3hulskhudov 65$0 &2'( 2swlrqe\whv 6\vwhpphpru\ )odvkphpru\ )odvkv\vwhp phpru\ru65$0 ghshqglqjrq%227 frqiljxudwlrq $+% $+% $3% $3% [ [ [ [)) [ [& [ [$ [ [))))))) [)))) [)))' [ [ [ [ 5hvhuyhg 06y9 $+% [ )) 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg
memory mapping stm32f302x6 stm32f302x8 49/135 docid025147 rev 3 table 18. stm32f302x6 stm32f302x8 peripheral register boundary addresses bus boundary address size (bytes) peripheral ahb3 0x5000 0000 - 0x5000 03ff 1 k adc1 0x4800 1800 - 0x4fff ffff ~132 m reserved ahb2 0x4800 1400 - 0x4800 17ff 1 k gpiof 0x4800 1000 - 0x4800 13ff 1 k reserved 0x4800 0c00 - 0x4800 0fff 1 k gpiod 0x4800 0800 - 0x4800 0bff 1 k gpioc 0x4800 0400 - 0x4800 07ff 1 k gpiob 0x4800 0000 - 0x4800 03ff 1 k gpioa 0x4002 4400 - 0x47ff ffff ~128 m reserved ahb1 0x4002 4000 - 0x4002 43ff 1 k tsc 0x4002 3400 - 0x4002 3fff 3 k reserved 0x4002 3000 - 0x4002 33ff 1 k crc 0x4002 2400 - 0x4002 2fff 3 k reserved 0x4002 2000 - 0x4002 23ff 1 k flash interface 0x4002 1400 - 0x4002 1fff 3 k reserved 0x4002 1000 - 0x4002 13ff 1 k rcc 0x4002 0800 - 0x4002 0fff 2 k reserved 0x4002 0400 - 0x4002 07ff 1 k reserved 0x4002 0000 - 0x4002 03ff 1 k dma1 0x4001 8000 - 0x4001 ffff 32 k reserved apb2 0x4001 4c00 - 0x4001 7fff 13 k reserved 0x4001 4800 - 0x4001 4bff 1 k tim17 0x4001 4400 - 0x4001 47ff 1 k tim16 0x4001 4000 - 0x4001 43ff 1 k tim15 0x4001 3c00 - 0x4001 3fff 1 k reserved 0x4001 3800 - 0x4001 3bff 1 k usart1 0x4001 3400 - 0x4001 37ff 1 k reserved 0x4001 3000 - 0x4001 33ff 1 k reserved 0x4001 0800 - 0x4001 2fff 10 k tim1 0x4001 0400 - 0x4001 07ff 1 k exti 0x4001 0000 - 0x4001 03ff 1 k syscfg + comp + opamp 0x4000 7c00 - 0x4000 ffff 33 k reserved
docid025147 rev 3 50/135 stm32f302x6 stm32f302x8 memory mapping 51 apb1 0x4000 7800 - 0x4000 7bff 9 k i2c3 0x4000 7400 - 0x4000 77ff 1 k dac1 0x4000 7000 - 0x4000 73ff 1 k pwr 0x4000 6c00 - 0x4000 6fff 1 k reserved 0x4000 6800 - 0x4000 6bff 1 k reserved 0x4000 6400 - 0x4000 67ff 1 k bxcan 0x4000 6000 - 0x4000 63ff 1 k usb/can sram 0x4000 5c00 - 0x4000 5fff 1 k usb device fs 0x4000 5800 - 0x4000 5bff 1 k i2c2 0x4000 5400 - 0x4000 57ff 1 k i2c1 0x4000 5000 - 0x4000 53ff 1 k reserved 0x4000 4c00 - 0x4000 4fff 1 k reserved 0x4000 4800 - 0x4000 4bff 1 k usart3 0x4000 4400 - 0x4000 47ff 1 k usart2 0x4000 4000 - 0x4000 43ff 1 k i2s3ext 0x4000 3c00 - 0x4000 3fff 1 k spi3/i2s3 0x4000 3800 - 0x4000 3bff 1 k spi2/i2s2 0x4000 3400 - 0x4000 37ff 1 k i2s2ext 0x4000 3000 - 0x4000 33ff 1 k iwdg 0x4000 2c00 - 0x4000 2fff 1 k wwdg 0x4000 2800 - 0x4000 2bff 1 k rtc 0x4000 1400 - 0x4000 27ff 5 k reserved 0x4000 1000 - 0x4000 13ff 1 k tim6 0x4000 0c00 - 0x4000 0fff 1 k reserved 0x4000 0800 - 0x4000 0bff 1 k reserved 0x4000 0400 - 0x4000 07ff 1 k reserved 0x4000 0000 - 0x4000 03ff 1 k tim2 0x2000 a000 - 3fff ffff ~512 m reserved 0x2000 0000 - 0x2000 9fff 40 k sram 0x1fff f800 - 0x1fff ffff 2 k option bytes 0x1fff d800 - 0x1fff f7ff 8 k system memory 0x0804 0000 - 0x1fff d7ff ~384 m reserved 0x0800 0000 - 0x0800 ffff 64 k main flash memory table 18. stm32f302x6 stm32f302x8 peripheral register boundary addresses bus boundary address size (bytes) peripheral
memory mapping stm32f302x6 stm32f302x8 51/135 docid025147 rev 3 0x0004 0000 - 0x07ff ffff ~128 m reserved apb1 (continued) 0x0000 000 - 0x0000 ffff 64 k main flash memory, system memory or sram depending on boot configuration table 18. stm32f302x6 stm32f302x8 peripheral register boundary addresses bus boundary address size (bytes) peripheral
docid025147 rev 3 52/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 v ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = v dda = 3.3 v. they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 v ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 9 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 10 . figure 9. pin loading conditions figure 10. pin input voltage 069 0&8slq & s) 069 0&8slq 9 ,1
electrical characteristics stm32f302x6 stm32f302x8 53/135 docid025147 rev 3 6.1.6 power supply scheme figure 11. power supply scheme caution: each power supply pair (for example v dd /v ss , v dda /v ssa ) must be decoupled with filtering ceramic capacitors as shown above. these capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the pcb to ensure the good functionality of the device. 069 /hyhovkliwhu $qdorj5&v 3//frpsdudwruv23$03  3rzhu vzlwfk $'&'$& .huqhoorjlf &38 gljlwdo phprulhv ,2orjlf %dfnxsflufxlwu\ /6(57& :dnhxsorjlf %dfnxsuhjlvwhuv 9 %$7 9 *3,2v 9 '' 287 ,1 5hjxodwru [9 '' [9 66 9 ''$ 9 ''$ 9 5() 9 5() 9 66$ [q) [?) q) ?)
docid025147 rev 3 54/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.1.7 current consumption measurement figure 12. current consumption measurement scheme 069 9 %$7 9 '' 9 ''$ , '' , ''$ , ''b9%$7
electrical characteristics stm32f302x6 stm32f302x8 55/135 docid025147 rev 3 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 19: voltage characteristics , table 20: current characteristics , and table 21: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. v table 19. voltage characteristics (1) symbol ratings min max unit v dd ?v ss external main supply voltage (including v dda, v bat and v dd ) -0.3 4.0 v v dd ?v dda allowed voltage difference for v dd > v dda - 0.4 v v in (2) input voltage on ft and ftf pins v ss  0.3 v dd + 4.0 v input voltage on tta and tt pins v ss  0.3 4.0 input voltage on any other pin v ss  0.3 4.0 input voltage on boot0 pin 0 9 | ' v ddx | variations between different v dd power pins - 50 mv |v ssx  v ss | variations between all the different ground pins - 50 v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.12: electrical sensitivity characteristics v 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. the following relationship must be respected between v dda and v dd : v dda must power on before or at the same time as v dd in the power up sequence. v dda must be greater than or equal to v dd . 2. v in maximum must always be respected. refer to table 20: current characteristics for the maximum allowed injected current values. table 20. current characteristics symbol ratings max. unit 6 i vdd total current into sum of all vdd_x power lines (source) 130 ma 6 i vss total current out of sum of all vss_x ground lines (sink) -130 i vdd maximum current into each v dd_x power line (source) (1) 100 i vss maximum current out of each v ss _x ground line (sink) (1) -100 i io(pin) output current sunk by any i/o and control pin 25 output current sourced by any i/o and control pin -25 6 i io(pin) total output current sunk by sum of all ios and control pins (2) 80 total output current sourced by sum of all ios and control pins (2) -80 i inj(pin) injected current on tt, ft, ftf and b pins (3) -5/+0 injected current on tc and rst pin (4) +/-5 injected current on tta pins (5) +/-5 6 i inj(pin) total injected current (sum of all i/o and control pins) (6) +/-25
docid025147 rev 3 56/135 stm32f302x6 stm32f302x8 electrical characteristics 115 1. all main power (v dd , v dda ) and ground (v ss and v ssa ) pins must always be connected to the external power supply, in the permitted range. 2. this current consumption must be correctly distributed over all i/os and control pins.the total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count lqfp packages. 3. positive injection is not possible on these i/os and does not occur for input voltages lower than the specified maximum value. 4. a positive injection is induced by v in > v dd while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 19: voltage characteristics for the maximum allowed input voltage values. 5. a positive injection is induced by v in > v dda while a negative injection is induced by v in < v ss . i inj (pin) must never be exceeded. refer also to table 19: voltage characteristics for the maximum allowed input voltage values. negative injection disturbs the analog performance of the device. see note (2) below table 67 . 6. when several inputs are submitted to a current injection, the maximum 6 i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). table 21. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c
electrical characteristics stm32f302x6 stm32f302x8 57/135 docid025147 rev 3 6.3 operating conditions 6.3.1 general operating conditions table 22. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency - 0 72 mhz f pclk1 internal apb1 clock frequency - 0 36 f pclk2 internal apb2 clock frequency - 0 72 v dd standard operating voltage - 2 3.6 v v dda analog operating voltage (opamp and dac not used) must have a potential equal to or higher than v dd 2 3.6 v analog operating voltage (opamp and dac used) 2.4 3.6 v bat backup operating voltage - 1.65 3.6 v v in i/o input voltage tc i/o ?0.3 v dd +0.3 v tt i/o (1) -0.3 3.6 tta i/o pins ?0.3 v dda +0.3 ft and ftf i/o (1) 1. to sustain a voltage higher than v dd +0.3 v, the internal pull-up/pull-down resistors must be disabled. ?0.3 5.5 boot0 0 5.5 p d power dissipation at t a = 85 c for suffix 6 or t a = 105 c for suffix 7 (2) 2. if t a is lower, higher p d values are allowed as long as t j does not exceed t jmax . see table 80: package thermal characteristics . lqfp64 - 444 mw lqfp48 - 364 mw t a ambient temperature for 6 suffix version maximum power dissipation ?40 85 c low power dissipation (3) 3. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t jmax . see table 80: package thermal characteristics ?40 105 ambient temperature for 7 suffix version maximum power dissipation ?40 105 c low power dissipation (3) ?40 125 t j junction temperature range 6 suffix version ?40 105 c 7 suffix version ?40 125
docid025147 rev 3 58/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.3.2 operating conditions at power-up / power-down the parameters given in table 23 are derived from tests performed under the ambient temperature condition summarized in table 22 . 6.3.3 embedded reset and power control block characteristics the parameters given in table 24 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . table 23. operating conditions at power-up / power-down symbol parameter conditions min max unit t vdd v dd rise time rate - 0 f s/v v dd fall time rate 20 f t vdda v dda rise time rate - 0 f v dda fall time rate 20 f table 24. embedded reset and power control block characteristics symbol parameter conditions min typ max unit v por/pdr (1) 1. the pdr detector monitors v dd and also v dda (if kept enabled in the option bytes). the por detector monitors only v dd . power on/power down reset threshold falling edge 1.8 (2) 2. the product behavior is guaranteed by design down to the minimum v por/pdr value. 1.88 1.96 v rising edge 1.84 1.92 2.0 v v pdrhyst (1) pdr hysteresis - 40 - mv t rsttempo (3) 3. based on characterization, not tested in production. por reset temporization 1.5 2.5 4.5 ms
electrical characteristics stm32f302x6 stm32f302x8 59/135 docid025147 rev 3 table 25. programmable voltage detector characteristics symbol parameter conditions min (1) 1. data based on characterization results only, not tested in production. typ max (1) unit v pvd0 pvd threshold 0 rising edge 2.1 2.18 2.26 v falling edge 2 2.08 2.16 v pvd1 pvd threshold 1 rising edge 2.19 2.28 2.37 falling edge 2.09 2.18 2.27 v pvd2 pvd threshold 2 rising edge 2.28 2.38 2.48 falling edge 2.18 2.28 2.38 v pvd3 pvd threshold 3 rising edge 2.38 2.48 2.58 falling edge 2.28 2.38 2.48 v pvd4 pvd threshold 4 rising edge 2.47 2.58 2.69 falling edge 2.37 2.48 2.59 v pvd5 pvd threshold 5 rising edge 2.57 2.68 2.79 falling edge 2.47 2.58 2.69 v pvd6 pvd threshold 6 rising edge 2.66 2.78 2.9 falling edge 2.56 2.68 2.8 v pvd7 pvd threshold 7 rising edge 2.76 2.88 3 falling edge 2.66 2.78 2.9 v pvdhyst (2) 2. guaranteed by design, not tested in production. pvd hysteresis - 100 - mv idd(pvd) pvd current consumption - 0.15 0.26 a
docid025147 rev 3 60/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.3.4 embedded reference voltage the parameters given in table 26 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . 6.3.5 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pin loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 12: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to coremark code. note: the total current consumption is the sum of i dd and i dda . table 26. embedded internal reference voltage symbol parameter conditions min typ max unit v refint internal reference voltage ?40 c < t a < +105 c 1.16 1.2 1.25 v ?40 c < t a < +85 c 1.16 1.2 1.24 (1) 1. data based on characterization results, not tested in production. v t s_vrefint adc sampling time when reading the internal reference voltage - 2.2 - - s v rerint internal reference voltage spread over the temperature range v dd = 3 v 10 mv - - 10 (2) 2. guaranteed by design, not tested in production. mv t coeff temperature coefficient - - - 100 (2) ppm/ c table 27. internal reference voltage calibration values calibration value name description memory address v refint_cal raw data acquired at temperature of 30 c v dda = 3.3 v 0x1fff f7ba - 0x1fff f7bb
electrical characteristics stm32f302x6 stm32f302x8 61/135 docid025147 rev 3 typical and maximum current consumption the mcu is placed under the following conditions: x all i/o pins are in input mode with a static value at v dd or v ss (no load) x all peripherals are disabled except when explicitly mentioned x the flash memory access time is adjusted to the f hclk frequency (0 wait state from 0 to 24 mhz,1 wait state from 24 to 48 mhz and 2 wait states from 48 to 72 mhz) x prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) x when the peripherals are enabled f pclk2 = f hclk and f pclk1 = f hclk/2 x when f hclk > 8 mhz, the pll is on and the pll input is equal to hsi/2 (4 mhz) or hse (8 mhz) in bypass mode. the parameters given in table 28 to table 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . table 28. typical and maximum current consumption from vdd supply at vdd = 3.6v symbol parameter conditions f hclk all peripherals enabled all peripherals disabled unit typ max @ t a (1) typ max @ t a (1) 25 c 85 c 105 c 25 c 85 c 105 c i dd supply current in run mode, executing from flash external clock (hse bypass) 72 mhz 45.7 48.6 50.0 52.0 25.5 27.5 28.1 28.8 ma 64 mhz 40.6 43.6 44.5 46.4 22.7 24.6 25.2 25.9 48 mhz 30.8 33.6 34.1 35.5 17.3 19.0 19.5 20.0 32 mhz 21.0 22.9 23.5 25.6 11.7 13.2 13.7 14.1 24 mhz 16.0 16.8 18.0 18.9 9.0 10.4 10.8 11.4 8 mhz 5.4 5.6 6.1 7.2 3.3 3.3 3.8 4.2 1 mhz 1.1 1.2 1.7 2.7 0.8 0.9 1.3 1.6 internal clock (hsi) 64 mhz 37.6 41.3 42.9 44.7 22.5 24.7 25.0 25.8 48 mhz 28.7 32.3 33.1 34.0 17.2 19.1 19.4 19.6 32 mhz 19.5 22.0 23.4 24.6 11.5 12.9 13.5 13.7 24 mhz 14.9 16.6 17.9 18.4 6.0 7.0 7.4 7.9 8 mhz 5.2 5.5 6.4 7.0 3.2 3.8 4.3 4.7
docid025147 rev 3 62/135 stm32f302x6 stm32f302x8 electrical characteristics 115 i dd supply current in run mode, executing from ram external clock (hse bypass) 72 mhz 45.8 49.1 (2) 50.1 51.4 (2) 25.1 27.3 (2) 28.0 28.6 (2) ma 64 mhz 40.8 43.6 44.9 46.9 22.3 24.1 25.0 25.5 48 mhz 25.5 27.5 28.4 29.7 14.0 15.6 16.2 16.8 32 mhz 20.5 23.1 24.1 25.4 11.1 12.2 13.2 13.3 24 mhz 15.4 17.1 18.3 19.5 8.5 9.7 10.1 10.2 8 mhz 5.0 5.9 6.3 6.9 3.1 3.7 4.1 4.7 1 mhz 0.8 1.1 1.9 2.6 0.5 0.8 1.2 1.4 internal clock (hsi) 64 mhz 37.3 41.1 41.8 43.3 22.0 23.8 24.4 24.9 48 mhz 28.0 31.1 31.6 33.2 16.4 18.0 18.3 18.6 32 mhz 18.8 21.3 22.1 23.1 10.9 11.9 12.8 13.1 24 mhz 14.2 15.9 16.8 17.9 5.5 6.4 6.7 7.3 8 mhz 4.8 5.1 6.0 6.5 2.9 3.5 4.1 4.2 i dd supply current in sleep mode, executing from flash or ram external clock (hse bypass) 72 mhz 30.0 32.8 (2) 33.1 34.1 (2) 5.9 6.8 (2) 6.9 7.4 (2) 64 mhz 26.7 29.2 29.6 30.5 5.3 5.9 6.2 6.7 48 mhz 16.7 18.5 19.0 19.7 3.6 4.5 4.5 5.3 32 mhz 13.3 14.9 15.3 15.4 2.9 3.7 3.8 4.3 24 mhz 10.2 11.4 12.0 12.3 2.2 2.7 2.9 3.2 8 mhz 3.6 4.4 4.8 5.3 0.9 1.2 1.5 2.1 1 mhz 0.5 0.8 1.1 1.3 0.1 0.4 0.8 0.8 internal clock (hsi) 64 mhz 23.2 25.3 25.6 26.2 5.0 5.7 6.1 6.2 ma 48 mhz 17.5 19.2 19.4 19.9 3.9 4.7 4.8 5.3 32 mhz 11.7 12.9 13.2 13.3 2.6 3.4 3.6 4.2 24 mhz 8.9 10.2 10.6 10.8 1.4 2.1 2.4 2.7 8 mhz 3.4 4.0 4.6 5.1 0.7 1.1 1.4 1.9 1. data based on characterization results, not tested in production unless otherwise specified. 2. data based on characterization results and tested in production with code executing from ram. table 28. typical and maximum current consumption from vdd supply at vdd = 3.6v (continued) symbol parameter conditions f hclk all peripherals enabled all peripherals disabled unit typ max @ t a (1) typ max @ t a (1) 25 c 85 c 105 c 25 c 85 c 105 c
electrical characteristics stm32f302x6 stm32f302x8 63/135 docid025147 rev 3 table 29. typical and maximum current consumption from the v dda supply symbol parameter conditions (1) f hclk v dda = 2.4 v v dda = 3.6 v unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dda supply current in run mode, code executing from flash or ram hse bypass 72 mhz 231 254 (3) 266 271 (3) 251 274 (3) 294 300 (3) a 64 mhz 203 226 239 243 222 245 261 266 48 mhz 153 174 182 186 165 185 198 203 32 mhz 105 124 131 133 114 132 141 143 24 mhz 82 98 104 105 89 106 111 113 8 mhz 3.1 4.1 4.1 5.1 3.6 4.7 5.2 5.5 1 mhz 3.1 4.1 4.1 5.1 3.6 4.7 5.2 5.5 hsi clock 64 mhz 270 294 307 312 296 322 338 343 48 mhz 219 242 253 257 240 263 276 281 32 mhz 171 192 201 203 188 209 219 222 24 mhz 148 169 175 177 163 182 190 193 8 mhz 69 84 87 87 79 92 94 96 1. current consumption from the v dda supply is independent of whether the peripherals are on or off. furthermore when the pll is off, i dda is independent from the frequency. 2. data based on characterization results, not tested in production, unless specified. 3. data based on characterization results and tested in production with code executing from ram. table 30. typical and maximum v dd consumption in stop and standby modes symbol parameter conditions typ @v dd (v dd =v dda ) max (1) unit 2.0 v 2.4 v 2.7 v 3.0 v 3.3 v 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd supply current in stop mode regulator in run mode, all oscillators off 16.92 17.09 17.16 17.27 17.39 17.50 29.7 359.1 564.5 a regulator in low-power mode, all oscillators off 5.29 5.46 5.55 5.70 5.73 5.95 16.40 267.1 407.4 supply current in standby mode lsi on and iwdg on 0.80 0.93 1.11 1.19 1.31 1.41 - - - lsi off and iwdg off 0.63 0.76 0.84 0.95 1.02 1.10 5.00 6.30 12.60 1. data based on characterization results, not tested in production unless otherwise specified.
docid025147 rev 3 64/135 stm32f302x6 stm32f302x8 electrical characteristics 115 table 31. typical and maximum v dda consumption in stop and standby modes symbol parameter conditions typ @v dd (v dd = v dda ) max (1) unit 2.0 v 2.4 v 2.7 v 3.0 v 3.3 v 3.6 v t a = 25 c t a = 85 c t a = 105 c i dda supply current in stop mode v dda supervisor on regulator in run/low- power mode, all oscillators off 1.70 1.83 1.95 2.08 2.22 2.37 3.40 5.30 5.5 a supply current in standby mode lsi on and iwdg on 2.08 2.25 2.41 2.59 2.79 3.01 - - - lsi off and iwdg off 1.59 1.72 1.83 1.96 2.10 2.25 2.80 2.90 3.60 supply current in stop mode v dda supervisor off regulator in run/low- power mode, all oscillators off 0.99 1.01 1.04 1.09 1.14 1.21 - - - supply current in standby mode lsi on and iwdg on 1.36 1.43 1.50 1.60 1.72 1.85 - - - lsi off and iwdg off 0.87 0.89 0.92 0.97 1.02 1.09 - - - 1. data based on characterization results, not tested in production. table 32. typical and maximum current consumption from v bat supply symbol para meter conditions (1) typ.@v bat max. @v bat = 3.6v (2) t a (c) unit 1.65v 1.8v 2v 2.4v 2.7v 3v 3.3v 3.6v 25 85 105 i dd_vbat backup domain supply current lse & rtc on; ?xtal mode? lower driving capability; lsedrv[1: 0] = '00' 0.41 0.43 0.46 0.54 0.59 0.66 0.74 0.82 - - - a lse & rtc on; ?xtal mode? higher driving capability; lsedrv[1: 0] = '11' 0.65 0.68 0.73 0.80 0.87 0.95 1.03 1.14 - - - 1. crystal used: abracon abs07-120-32.768 khz-t with a cl of 6 pf for typical values. 2. data based on characterization results, not tested in production.
electrical characteristics stm32f302x6 stm32f302x8 65/135 docid025147 rev 3 figure 13. typical v bat current consumption (lse and rtc on/lsedrv[1:0] = ?00?) typical current consumption the mcu is placed under the following conditions: x v dd = v dda = 3.3 v x all i/o pins available on each package are in analog input configuration x the flash access time is adjusted to f hclk frequency (0 wait states from 0 to 24 mhz, 1 wait state from 24 to 48 mhz and 2 wait states from 48 mhz to 72 mhz), and flash prefetch is on x when the peripherals are enabled, f apb1 = f ahb/2 , f apb2 = f ahb x pll is used for frequencies greater than 8 mhz x ahb prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 mhz, 2 mhz, 1 mhz, 500 khz and 125 khz respectively. 06 06[[[[[9\          ?& ?& ?& ?& ?$ , 9%$7 7 $ ?& 9 9 9 9 9 9 9 9
docid025147 rev 3 66/135 stm32f302x6 stm32f302x8 electrical characteristics 115 table 33. typical current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk typ unit peripherals enabled peripherals disabled i dd supply current in run mode from v dd supply running from hse crystal clock 8 mhz, code executing from flash 72 mhz 44.8 24.9 ma 64 mhz 40.0 22.4 48 mhz 30.3 17.1 32 mhz 20.7 11.9 24 mhz 15.8 9.2 16 mhz 10.9 6.5 8 mhz 5.7 3.55 4 mhz 3.43 3.22 2 mhz 2.18 1.53 1 mhz 1.56 1.19 500 khz 1.25 0.96 125 khz 0.96 0.84 i dda (1) (2) supply current in run mode from v dda supply 72 mhz 237.1 a 64 mhz 208.3 48 mhz 154.3 32 mhz 105.0 24 mhz 81.3 16 mhz 57.8 8 mhz 1.15 4 mhz 1.15 2 mhz 1.15 1 mhz 1.15 500 khz 1.15 125 khz 1.15 1. v dda supervisor is off. 2. when peripherals are enabled, the power consumption of the analog part of peripherals such as adc, dac, comparators, opamp etc. is not included. refer to the tables of characteristics in the subsequent sections.
electrical characteristics stm32f302x6 stm32f302x8 67/135 docid025147 rev 3 table 34. typical current consumption in sleep mode, code running from flash or ram symbol parameter conditions f hclk typ unit peripherals enabled peripherals disabled i dd supply current in sleep mode from v dd supply running from hse crystal clock 8 mhz, code executing from flash or ram 72 mhz 28.7 6.1 ma 64 mhz 25.6 5.5 48 mhz 19.3 4.26 32 mhz 13.1 3.04 24 mhz 10.0 2.42 16 mhz 6.8 1.81 8 mhz 3.54 0.98 4 mhz 2.35 0.88 2 mhz 1.64 0.80 1 mhz 1.28 0.77 500 khz 1.11 0.75 125 khz 0.92 0.74 i dda (1) (2) supply current in sleep mode from v dda supply 72 mhz 237.1 a 64 mhz 208.3 48 mhz 154.3 32 mhz 105.0 24 mhz 81.3 16 mhz 57.8 8 mhz 1.15 4 mhz 1.15 2 mhz 1.15 1 mhz 1.15 500 khz 1.15 125 khz 1.15 1. v dda supervisor is off. 2. when peripherals are enabled, the power consumption of the analog part of peripherals such as adc, dac, comparators, opamp etc. is not included. refer to the tables of characteristics in the subsequent sections.
docid025147 rev 3 68/135 stm32f302x6 stm32f302x8 electrical characteristics 115 i/o system current consumption the current consumption of the i/o system has two components: static and dynamic. i/o static current consumption all the i/os used as inputs with pull-up generate current consumption when the pin is externally held low . the value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in table 52: i/o static characteristics . for the output pins, any external pull-down or external load must also be considered to estimate the current consumption. additional i/o current consumption is due to i/os configured as inputs if an intermediate voltage level is externally applied. this current consumption is caused by the input schmitt trigger circuits used to discriminate the input value. unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these i/os in analog mode. this is notably the case of adc input pins which should be configured as analog inputs. caution: any floating input pin can also settle to an intermediate voltage level or switch inadvertently , as a result of external electromagnetic noise. to avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. this can be done either by using pull-up/down resistors or by configuring the pins in output mode. i/o dynamic current consumption in addition to the internal peripheral current consumption (see table 36: peripheral current consumption), the i/os used by an application also contribute to the current consumption. when an i/o pin switches, it uses the current from the mcu supply voltage to supply the i/o pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: i sw v dd f sw c ?? = where i sw is the current sunk by a switching i/o to charge/discharge the capacitive load v dd is the mcu supply voltage f sw is the i/o switching frequency c is the total capacitance seen by the i/o pin: c = c int + c ext +c s the test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
electrical characteristics stm32f302x6 stm32f302x8 69/135 docid025147 rev 3 table 35. switching output i/o current consumption symbol parameter conditions (1) i/o toggling frequency (f sw ) typ unit i sw i/o current consumption v dd = 3.3 v c ext = 0 pf c = c int + c ext + c s 2 mhz 0.90 ma 4 mhz 0.93 8 mhz 1.16 18 mhz 1.60 36 mhz 2.51 48 mhz 2.97 v dd = 3.3 v c ext = 10 pf c = c int + c ext +c s 2 mhz 0.93 4 mhz 1.06 8 mhz 1.47 18 mhz 2.26 36 mhz 3.39 48 mhz 5.99 v dd = 3.3 v c ext = 22 pf c = c int + c ext +c s 2 mhz 1.03 4 mhz 1.30 8 mhz 1.79 18 mhz 3.01 36 mhz 5.99 v dd = 3.3 v c ext = 33 pf c = c int + c ext + c s 2 mhz 1.10 4 mhz 1.31 8 mhz 2.06 18 mhz 3.47 36 mhz 8.35 v dd = 3.3 v c ext = 47 pf c = c int + c ext + c s 2 mhz 1.20 4 mhz 1.54 8 mhz 2.46 18 mhz 4.51 1. cs = 5 pf (estimated value).
docid025147 rev 3 70/135 stm32f302x6 stm32f302x8 electrical characteristics 115 on-chip peripheral current consumption the mcu is placed under the following conditions: x all i/o pins are in analog input configuration x all peripherals are disabled unless otherwise mentioned x the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on x ambient operating temperature at 25c and v dd = v dda = 3.3 v.
electrical characteristics stm32f302x6 stm32f302x8 71/135 docid025147 rev 3 table 36. peripheral current consumption peripheral typical consumption (1) unit i dd busmatrix (2) 11.3 a/mhz dma1 6.7 crc 2.0 gpioa 8.5 gpiob 8.3 gpioc 8.6 gpiod 1.5 gpiof 1.0 tsc 4.7 adc1 15.9 apb2-bridge (3) 2.7 syscfg 3.2 tim1 27.6 usart1 21.0 tim15 14.3 tim16 10.1 tim17 10.4 apb1-bridge (3) 5.8 tim2 40.7 tim6 7.4 wwdg 4.6 spi2 35.2 spi3 34.2 usart2 13.9 usart3 13.1 i2c1 9.4 i2c2 9.4 usb 17.4 can 28.8 pwr 4.5 dac 8.3 i2c3 10.5 1. the power consumption of the analog part (i dda ) of peripherals such as adc, dac, comparators, opamp etc. is not included. refer to the tables of characteristics in the subsequent sections. 2. busmatrix is automatically active when at least one master is on (cpu or dma1). 3. the apbx bridge is automatically active when at least one peripheral is on on the same bus.
docid025147 rev 3 72/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.3.6 wakeup time from low-power mode the wakeup times given in table 37 are measured starting from the wakeup event trigger up to the first instruction executed by the cpu: x for stop or sleep mode: the wakeup event is wfe. x wkup1 (pa0) pin is used to wakeup from standby, stop and sleep modes. all timings are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . table 37. low-power mode wakeup timings symbol parameter conditions typ @v dd, v dd = v dda max unit 2.0 v 2.4 v 2.7 v 3 v 3.3 v 3.6 v t wustop wakeup from stop mode regulator in run mode 4.5 4.2 4.1 4.0 3.8 3.8 4.5 s regulator in low-power mode 8.2 7.0 6.4 6.0 5.7 5.5 9.0 t wustandby (1) wakeup from standby mode lsi and iwdg off 72.8 63.4 59.2 56.1 53.1 51.3 103 t wusleep wakeup from sleep mode 6- cpu clock cycles 1. data based on characterization results, not tested in production.
electrical characteristics stm32f302x6 stm32f302x8 73/135 docid025147 rev 3 6.3.7 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock input waveform is shown in figure 14 . figure 14. high-speed external clock source ac timing diagram table 38. high-speed external user clock characteristics symbol parameter conditions min typ max unit f hse_ext user external clock source frequency (1) 1. guaranteed by design, not tested in production. - 1 8 32 mhz v hseh osc_in input pin high level voltage 0.7v dd -v dd v v hsel osc_in input pin low level voltage v ss - 0.3v dd t w(hseh) t w(hsel) osc_in high or low time (1) 15 - - ns t r(hse) t f(hse) osc_in rise or fall time (1) --20 069 9 +6(+ w i +6(   7 +6( w w u +6( 9 +6(/ w z +6(+ w z +6(/
docid025147 rev 3 74/135 stm32f302x6 stm32f302x8 electrical characteristics 115 low-speed external user clock generated from an external source in bypass mode the lse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock input waveform is shown in figure 15 figure 15. low-speed external clock source ac timing diagram table 39. low-speed external user clock characteristics symbol parameter conditions min typ max unit f lse_ext user external clock source frequency (1) 1. guaranteed by design, not tested in production. - - 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd -v dd v v lsel osc32_in input pin low level voltage v ss - 0.3v dd t w(lseh) t w(lsel) osc32_in high or low time (1) 450 - - ns t r(lse) t f(lse) osc32_in rise or fall time (1) --50 069 9 /6(+ w i /6(   7 /6( w w u /6( 9 /6(/ w z /6(+ w z /6(/
electrical characteristics stm32f302x6 stm32f302x8 75/135 docid025147 rev 3 high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 4 to 32 mhz crystal/ceramic resonator oscillator. all the information given in this paragraph are based on design simulation results obtained with typical external components specified in table 40 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). table 40. hse oscillator characteristics symbol parameter conditions (1) 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. min (2) 2. guaranteed by design, not tested in production. typ max (2) unit f osc_in oscillator frequency - 4 8 32 mhz r f feedback resistor - - 200 - k : i dd hse current consumption during startup (3) 3. this consumption level occurs during the first 2/3 of the t su(hse) startup time. - - 8.5 ma v dd =3.3 v, rm= 30 : , cl=10 pf@8 mhz - 0.4 - v dd =3.3 v, rm= 45 : , cl=10 pf@8 mhz - 0.5 - v dd =3.3 v, rm= 30 : , cl=10 pf@32 mhz - 0.8 - v dd =3.3 v, rm= 30 : , cl=10 pf@32 mhz -1- v dd =3.3 v, rm= 30 : , cl=10 pf@32 mhz - 1.5 - g m oscillator transconductance startup 10 - - ma/v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. startup time v dd is stabilized - 2 - ms
docid025147 rev 3 76/135 stm32f302x6 stm32f302x8 electrical characteristics 115 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 16 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the combined pin and board capacitance) when sizing c l1 and c l2 . note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com . figure 16. typical application with an 8 mhz crystal 1. r ext value depends on the crystal characteristics. 069  26&b,1 26&b287 5 ) %ldv frqwuroohg jdlq i +6( 5 (;7 0+] uhvrqdwru 5hvrqdwruzlwklqwhjudwhg fdsdflwruv & / & /
electrical characteristics stm32f302x6 stm32f302x8 77/135 docid025147 rev 3 low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillator. all the information given in this paragraph are based on design simulation results obtained with typical external components specified in table 41 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com . table 41. lse oscillator characteristics (f lse = 32.768 khz) symbol parameter conditions (1) min (2) typ max (2) unit i dd lse current consumption lsedrv[1:0]=00 lower driving capability - 0.5 0.9 a lsedrv[1:0]=01 medium low driving capability --1 lsedrv[1:0]=10 medium high driving capability - - 1.3 lsedrv[1:0]=11 higher driving capability - - 1.6 g m oscillator transconductance lsedrv[1:0]=00 lower driving capability 5- - a/v lsedrv[1:0]=01 medium low driving capability 8- - lsedrv[1:0]=10 medium high driving capability 15 - - lsedrv[1:0]=11 higher driving capability 25 - - t su(lse) (3) startup time v dd is stabilized - 2 - s 1. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 2. guaranteed by design, not tested in production. 3. t su(lse) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. this value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
docid025147 rev 3 78/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 17. typical application with a 32.768 khz crystal note: an external resistor is not required between osc32_in and osc32_out and it is forbidden to add one. 069 26&b,1 26&b287 'ulyh surjudppdeoh dpsolilhu i +6( n+] uhvrqdwru 5hvrqdwruzlwklqwhjudwhg fdsdflwruv & / & /
electrical characteristics stm32f302x6 stm32f302x8 79/135 docid025147 rev 3 6.3.8 internal clock source characteristics the parameters given in table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . high-speed internal (hsi) rc oscillator figure 18. hsi oscillator accuracy characterization results for soldered parts table 42. hsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi frequency - - 8 - mhz trim hsi user trimming step - - - 1 (2) 2. guaranteed by design, not tested in production. % ducy (hsi) duty cycle - 45 (2) -55 (2) % acc hsi accuracy of the hsi oscillator t a = -40 to 105c -2.8 (3) 3. data based on characterization results, not tested in production. - 3.8 (3) % t a = -10 to 85c -1.9 (3) - 2.3 (3) t a = 0 to 85c -1.9 (3) -2 (3) t a = 0 to 70c -1.3 (3) -2 (3) t a = 0 to 55c -1 (3) -2 (3) t a = 25c (4) 4. factory calibrated, parts not soldered. -1 - 1 t su(hsi) hsi oscillator startup time - 1 (2) -2 (2) s i dda(hsi) hsi oscillator power consumption - - 80 100 (2) a 069 5<?$> " ."9 .*/                  
docid025147 rev 3 80/135 stm32f302x6 stm32f302x8 electrical characteristics 115 low-speed internal (lsi) rc oscillator 6.3.9 pll characteristics the parameters given in table 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . table 43. lsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter min typ max unit f lsi frequency 30 40 50 khz t su(lsi) (2) 2. guaranteed by design, not tested in production. lsi oscillator startup time - - 85 s i dd(lsi) (2) lsi oscillator power consumption - 0.75 1.2 a table 44. pll characteristics symbol parameter value unit min typ max f pll_in pll input clock (1) 1. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . 1 (2) -24 (2) mhz pll input clock duty cycle 40 (2) -60 (2) % f pll_out pll multiplier output clock 16 (2) - 72 mhz t lock pll lock time - - 200 (2) s jitter cycle-to-cycle jitter - - 300 (2) 2. guaranteed by design, not tested in production. ps
electrical characteristics stm32f302x6 stm32f302x8 81/135 docid025147 rev 3 6.3.10 memory characteristics flash memory the characteristics are given at t a = ?40 to 105 c unless otherwise specified. table 45. flash memory characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit t prog 16-bit programming time t a   ?40 to +105 c 20 - 40 s t erase page (2 kb) erase time t a  ?40 to +105 c 20 - 40 ms t me mass erase time t a  ?40 to +105 c 20 - 40 ms i dd supply current write mode - - 10 ma erase mode - - 12 ma table 46. flash memory endurance and data retention symbol parameter conditions value unit min (1) 1. data based on characterization results, not tested in production. n end endurance t a = ?40 to +85 c (6 suffix versions) t a = ?40 to +105 c (7 suffix versions) 10 kcycles t ret data retention 1 kcycle (2) at t a = 85 c 2. cycling performed over the whole temperature range. 30 years 1 kcycle (2) at t a = 105 c 10 10 kcycles (2) at t a = 55 c 20
docid025147 rev 3 82/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.3.11 emc characteristics susceptibility tests are performed on a sample basis during device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on the device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure occurs. the failure is indicated by the leds: x electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. x ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a functional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 47 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in relation with the emc level requested for his application. software recommendations the software flowchart must include the management of runaway conditions such as: x corrupted program counter x unexpected reset x critical data corruption (control registers...) table 47. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp64, t a = +25c, f hclk = 72 mhz conforms to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp64, t a = +25c, f hclk = 72 mhz conforms to iec 61000-4-4 4a
electrical characteristics stm32f302x6 stm32f302x8 83/135 docid025147 rev 3 prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o ports). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. 6.3.12 electrical sensitivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. table 48. emi characteristics symbol parameter conditions monitored frequency band max vs. [f hse /f hclk ] unit 8/72 mhz s emi peak level v dd  3.3 v, t a  25 c, lqfp64 package compliant with iec 61967-2 0.1 to 30 mhz 5 db v 30 to 130 mhz 6 130 mhz to 1ghz 28 sae emi level 4 - table 49. esd absolute maximum ratings symbol ratings conditions packages class maximum value (1) unit v esd(hbm) electrostatic discharge voltage (human body model) t a  +25 c, conforming to jesd22-a114 all 2 2000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a  +25 c, conforming to ansi/esd stm5.3.1 lqfp64, wlcsp49 c3 250 v ufqfpn32a ll other c4 500 1. data based on characterization results, not tested in production.
docid025147 rev 3 84/135 stm32f302x6 stm32f302x8 electrical characteristics 115 static latch-up two complementary static tests are required on six parts to assess the latch-up performance: x a supply overvoltage is applied to each power supply pin x a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.13 i/o current injection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard, 3 v-capable i/o pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode. while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of ?5 a/+0 a range), or other functional failure (for example reset occurrence or oscillator frequency deviation). the test results are given in table 51 note: it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. table 50. electrical sensitivities symbol parameter conditions class lu static latch-up class t a  +105 c conforming to jesd78a 2 level a table 51. i/o current injection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on boot0 -0 na ma injected current on pc0 pin (tta pin) -0 +5 injected current pc0, pc1, pc2, pc3, pa0, pa1, pa2, pa3, pa4, pa6, pa7, pc4, pb0, pb10, pb11, pb13 with induced leakage current on other pins from this group less than -100 a or more than +100 a -5 +5 injected current on any other tt, ft and ftf pins -5 na injected current on all other tc, tta and reset pins -5 +5
electrical characteristics stm32f302x6 stm32f302x8 85/135 docid025147 rev 3 6.3.14 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 52 are derived from tests performed under the conditions summarized in table 22 . all i/os are cmos and ttl compliant. table 52. i/o static characteristics symbol parameter conditions min typ max unit v il low level input voltage tta and tt i/o - - 0.3 v dd + 0.07 (1) v ft and ftf i/o - - 0.475 v dd -0.2 (1) boot0 i/o - - 0.3 v dd ? 0.3 (1) all i/os except boot0 - - 0.3 v dd (2) v ih high level input voltage tta and tt i/o 0.445 v dd +0.398 (1) -- v ft and ftf i/o 0.5 v dd +0.2 (1) -- boot0 0.2 v dd +0.95 (1) -- all i/os except boot0 0.7 v dd (2) -- v hys schmitt trigger hysteresis tc and tta i/o - 200 (1) - mv ft and ftf i/o - 100 (1) - boot0 - 300 (1) - i lkg input leakage current (3) tc, ft and ftf i/o tta i/o in digital mode v ss d  v in d  v dd - - 0.1 a tta i/o in digital mode v dd d  v in d  v dda --1 tta i/o in analog mode v ss d  v in d  v dda - - 0.2 ft and ftf i/o (4) v dd d  v in d  5 v --10 r pu weak pull-up equivalent resistor (5) v in  v ss 25 40 55 k : r pd weak pull-down equivalent resistor (5) v in  v dd 25 40 55 k : c io i/o pin capacitance - - 5 - pf 1. data based on design simulation 2. tested in production. 3. leakage could be higher than the maximum value. if negative current is injected on adjacent pins. refer to table 51: i/o current injection susceptibility . 4. to sustain a voltage higher than v dd +0.3 v, the internal pull-up/pull-down resistors must be disabled. 5. pull-up and pull-down resistors are designed with a true resistance in series with a switchable pmos/nmos. this pmos/nmos contribution to the series resistance is minimum (~10% order).
docid025147 rev 3 86/135 stm32f302x6 stm32f302x8 electrical characteristics 115 all i/os are cmos and ttl compliant (no software configuration required). their characteristics cover more than the strict cmos-technology or ttl parameters. the coverage of these requirements is shown in figure 19 and figure 20 for standard i/os. figure 19. tc and tta i/o input characteristics - cmos port figure 20. tc and tta i/o input characteristics - ttl port figure 21. five volt tolerant (ft and ftf) i/o input characteristics - cmos port 069 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    9 ,/pd[ 9 ''      &026vwdqgduguhtxluhphqwv9 ,/pd[ 9 '' 9 ,+plq 9 ''  $uhdqrwghwhuplqhg 7hvwhglqsurgxfwlrq 7hvwhglqsurgxfwlrq %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv &026vwdqgduguhtxluhphqwv9 ,+plq  9 '' 069 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    77/vwdqgduguhtxluhphqwv9 ,+plq 9 9 ,/pd[ 9 ''      77/vwdqgduguhtxluhphqwv9 ,/pd[ 9 9 ,+plq 9 ''  $uhdqrwghwhuplqhg %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv 069 9 '' 9  9 ,/ 9 ,+ 9    9 ,/pd[ 9 ''   &026vwdqgduguhtxluhphqwv9 ,/pd[ 9 '' 9 ,+plq 9 ''  $uhdqrwghwhuplqhg %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv 7hvwhglqsurgxfwlrq &026vwdqgduguhtxluhphqwv9 ,+plq  9 '' 7hvwhglqsurgxfwlrq
electrical characteristics stm32f302x6 stm32f302x8 87/135 docid025147 rev 3 figure 22. five volt tolerant (ft and ftf) i/o input characteristics - ttl port 069 9 '' 9  9 ,/ 9 ,+ 9    9 ,/plq 9 ''   9 ,+plq 9 ''  $uhdqrwghwhuplqhg  77/vwdqgduguhtxluhphqwv9 ,+plq 9 77/vwdqgduguhtxluhphqwv9 ,/pd[ 9  %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv
docid025147 rev 3 88/135 stm32f302x6 stm32f302x8 electrical characteristics 115 output driving current the gpios (general purpose input/outputs) can sink or source up to +/-8 ma, and sink or source up to +/- 20 ma (with a relaxed v ol/ v oh ). in the user application, the number of i/o pins which can drive current must be limited to respect the absolute maximum rating specified in section 6.2 : x the sum of the currents sourced by all the i/os on v dd, plus the maximum run consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating 6 i vdd (see table 20 ). x the sum of the currents sunk by all the i/os on v ss plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating 6 i vss (see table 20 ). output voltage levels unless otherwise specified, the parameters given in table 53 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . all i/os (ft, tta and tc unless otherwise specified) are cmos and ttl compliant. table 53. output voltage characteristics symbol parameter conditions min max unit v ol (1) output low level voltage for an i/o pin cmos port (2) i io = +8 ma 2.7 v < v dd < 3.6 v - 0.4 v v oh (3) output high level voltage for an i/o pin v dd ?0.4 - v ol (1) output low level voltage for an i/o pin ttl port (2) i io = +8 ma 2.7 v < v dd < 3.6 v - 0.4 v oh (3) output high level voltage for an i/o pin 2.4 - v ol (1)(4) output low level voltage for an i/o pin i io = +20 ma 2.7 v < v dd < 3.6 v - 1.3 v oh (3)(4) output high level voltage for an i/o pin v dd ?1.3 - v ol (1)(4) output low level voltage for an i/o pin i io = +6 ma 2 v < v dd < 2.7 v - 0.4 v oh (3)(4) output high level voltage for an i/o pin v dd ?0.4 - v olfm+ (1)(4) output low level voltage for an ftf i/o pin in fm+ mode i io = +20 ma 2.7 v < v dd < 3.6 v - 0.4 1. the i io current sunk by the device must always respect the absolute maximum rating specified in table 20 and the sum of i io (i/o ports and control pins) must not exceed 6 i io(pin) . 2. ttl and cmos outputs are compatible with jedec standards jesd36 and jesd52. 3. the i io current sourced by the device must always respect the absolute maximum rating specified in table 20 and the sum of i io (i/o ports and control pins) must not exceed 6 i io(pin) . 4. data based on design simulation.
electrical characteristics stm32f302x6 stm32f302x8 89/135 docid025147 rev 3 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 23 and table 54 , respectively. unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . table 54. i/o ac characteristics (1) ospeedry [1:0] value (1) symbol parameter conditions min max unit x0 f max(io)out maximum frequency (2) c l = 50 pf, v dd = 2 v to 3.6 v - 2 (3) mhz t f(io)out output high to low level fall time c l = 50 pf, v dd = 2 v to 3.6 v - 125 (3) ns t r(io)out output low to high level rise time - 125 (3) 01 f max(io)out maximum frequency (2) c l = 50 pf, v dd = 2 v to 3.6 v - 10 (3) mhz t f(io)out output high to low level fall time c l = 50 pf, v dd = 2 v to 3.6 v -25 (3) ns t r(io)out output low to high level rise time -25 (3) 11 f max(io)out maximum frequency (2) c l = 30 pf, v dd = 2.7 v to 3.6 v-50 (3) mhz c l = 50 pf, v dd = 2.7 v to 3.6 v-30 (3) mhz c l = 50 pf, v dd = 2 v to 2.7 v-20 (3) mhz t f(io)out output high to low level fall time c l = 30 pf, v dd = 2.7 v to 3.6 v-5 (3) ns c l = 50 pf, v dd = 2.7 v to 3.6 v-8 (3) c l = 50 pf, v dd = 2 v to 2.7 v-12 (3) t r(io)out output low to high level rise time c l = 30 pf, v dd = 2.7 v to 3.6 v-5 (3) c l = 50 pf, v dd = 2.7 v to 3.6 v-8 (3) c l = 50 pf, v dd = 2 v to 2.7 v-12 (3) fm+ configuration (4) f max(io)out maximum frequency (2) c l = 50 pf, v dd = 2 v to 3.6 v -2 (4) mhz t f(io)out output high to low level fall time -12 (4) ns t r(io)out output low to high level rise time -34 (4) -t extipw pulse width of external signals detected by the exti controller -10-?ns 1. the i/o speed is configured using the ospeedrx[1:0] bits. refer to the rm0365 reference manual for a description of gpio port configuration register. 2. the maximum frequency is defined in figure 23 . 3. guaranteed by design, not tested in production. 4. the i/o speed configuration is bypassed in fm+ i/o mode. refer to the stm32f302x6 stm32f302x8 reference manual rm0365 for a description of fm+ i/o mode configuration.
docid025147 rev 3 90/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 23. i/o ac characteristics definition 1. see table 54: i/o ac characteristics . 6.3.15 nrst pin characteristics the nrst pin input driver uses cmos technology. it is connected to a permanent pull-up resistor, r pu (see table 52 ). unless otherwise specified, the parameters given in table 55 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . 069    w u ,2 rxw ([whuqdo rxwsxwrq& / 0d[lpxpiuhtxhqf\lvdfklhyhgli w u w i ? 7dqgliwkhgxw\f\fohlv       zkhqordghge\& / 7 w i ,2 rxw  vhhqrwh  table 55. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) nrst input low level voltage - - - 0.3v dd + 0.07 (1) v v ih(nrst) (1) nrst input high level voltage - 0.445v dd + 0.398 (1) -- v hys(nrst) nrst schmitt trigger voltage hysteresis - - 200 - mv r pu weak pull-up equivalent resistor (2) v in  v ss 25 40 55 k : v f(nrst) (1) nrst input filtered pulse - - - 100 (1) ns v nf(nrst) (1) nrst input not filtered pulse - 500 (1) --ns 1. guaranteed by design, not tested in production. 2. the pull-up is designed with a true resistance in series with a switchable pmos. this pmos contribution to the series resistance must be minimum (~10% order) .
electrical characteristics stm32f302x6 stm32f302x8 91/135 docid025147 rev 3 figure 24. recommended nrst pin protection 1. the reset network protects the device against parasitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 55 . otherwise the reset will not be taken into account by the device. 6.3.16 timer characteristics the parameters given in table 56 are guaranteed by design. refer to section 6.3.14: i/o port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, pwm output). 069 ([whuqdo uhvhwflufxlwu\   1567  ?) 9 '' 5 38 )lowhu ,qwhuqdouhvhw table 56. timx (1)(2) characteristics 1. timx is used as a general term to refer to the tim1, tim2, tim15, tim16 and tim17 timers. 2. guaranteed by design, not tested in production. symbol parameter conditions min max unit t res(tim) timer resolution time -1- t timxclk f timxclk = 72 mhz 13.9 - ns f timxclk = 144 mhz, x = 1, 15,16, 17 6.95 - ns f ext timer external clock frequency on ch1 to ch4 -0 f timxclk /2 mhz f timxclk = 72 mhz 0 36 mhz res tim timer resolution timx (except tim2) - 16 bit tim2 - 32 t counter 16-bit counter clock period - 1 65536 t timxclk f timxclk = 72 mhz 0.0139 910 s f timxclk = 144 mhz, x= 1/15/16/17 0.0069 455 s t max_count maximum possible count with 32-bit counter - - 65536 65536 t timxclk f timxclk = 72 mhz - 59.65 s f timxclk = 144 mhz, x= 1/15/16/17 - 29.825 s
docid025147 rev 3 92/135 stm32f302x6 stm32f302x8 electrical characteristics 115 table 57. iwdg min/max timeout period at 40 khz (lsi) (1) 1. these timings are given for a 40 khz clock but the microcontroller internal rc frequency can vary from 30 to 60 khz. moreover, given an exact rc oscillator frequency, the exact timings still depend on the phasing of the apb interface clock versus the lsi clock so that there is always a full rc period of uncertainty. prescaler divider pr[2:0] bits min timeout (ms) rl[11:0]= 0x000 max timeout (ms) rl[11:0]= 0xfff /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 table 58. wwdg min-max timeout value @72 mhz (pclk) (1) 1. guaranteed by design, not tested in production. prescaler wdgtb min timeout value max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127
electrical characteristics stm32f302x6 stm32f302x8 93/135 docid025147 rev 3 6.3.17 communications interfaces i 2 c interface characteristics the i2c interface meets the timings requirements of the i 2 c-bus specification and user manual rev. 03 for: x standard-mode (sm): with a bit rate up to 100 kbit/s x fast-mode (fm): with a bit rate up to 400 kbit/s x fast-mode plus (fm+): with a bit rate up to 1 mbit/s. the i2c timings requirements are guaranteed by design when the i2c peripheral is properly configured (refer to reference manual). the sda and scl i/o requirements are met with the following restrictions: the sda and scl i/o pins are not "true" open-drain. when configured as open-drain, the pmos connected between the i/o pin and vddiox is disabled, but is still present. only ftf i/o pins support fm+ low level output current maximum requirement. refer to section 6.3.14: i/o port characteristics for the i2c i/os characteristics. all i2c sda and scl i/os embed an analog filter. refer to the table below for the analog filter characteristics: table 59. i2c analog filter characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter min max unit t af maximum pulse width of spikes that are suppressed by the analog filter 50 (2) 2. spikes with widths below t af(min) are filtered. 260 (3) 3. spikes with widths above t af(max) are not filtered ns
docid025147 rev 3 94/135 stm32f302x6 stm32f302x8 electrical characteristics 115 spi/i 2 s characteristics unless otherwise specified, the parameters given in table 60 for spi or in table 61 for i 2 s are derived from tests performed under ambient temperature, f pclkx frequency and v dd supply voltage conditions summarized in table 22 . refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (nss, sck, mosi, miso for spi and ws, ck, sd for i 2 s). table 60. spi characteristics (1) 1. data based on characterization results, not tested in production. symbol parameter conditions min typ max unit f sck 1/t c(sck) spi clock frequency master mode - - 18 mhz slave mode - - 18 t su(nss) nss setup time slave mode, spi presc = 2 4*tpcl k -- ns t h(nss) nss hold time slave mode, spi presc = 2 2*tpcl k -- t w(sckh) t w(sckl) sck high and low time master mode, f pclk = 36 mhz, presc = 4 tpclk- 2 tpclk tpclk+ 2 t su(mi) t su(si) data input setup time master mode 0 - - slave mode 1 - - t h(mi) data input hold time master mode 6.5 - - t h(si) slave mode 2.5 - - t a(so) data output access time slave mode 8 - 40 t dis(so) data output disable time slave mode 8 - 14 t v(so) data output valid time slave mode - 12 27 t v(mo) master mode - 1.5 4 t h(so) data output hold time slave mode 7.5 - - t h(mo) master mode 0 - -
electrical characteristics stm32f302x6 stm32f302x8 95/135 docid025147 rev 3 figure 25. spi timing diagram - slave mode and cpha = 0 figure 26. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at 0.5v dd and with external c l = 30 pf. dlf ^</v?? w,a  dk^/ / ewhd d/^k khd whd w,a  d^  k hd d^ /e /d khd >^ /e >^ khd wk>a wk>a /d /e e^^]v?? ?^h~e^^ ?~^< ?z~e^^ ?~^k ?~^<,?~^<> ?~^k ?z~^k ??~^<?(~^< ?]?~^k ??~^/ ?z~^/ dl ^</v?? w,a dk^ / /ewhd d/^ k khd w hd w,a d^  k h d d^ /e / d khd >^ /e >^ khd wk>a wk>a /d /e ? ^h~e^^ ? ~^< ? z~e^^ ? ~^k ? ~^>, ? ~^>> ? ~^k ? z~^k ? ?~^> ? (~^> ? ]?~^k ? ?~^/ ? z~^/ e^^]v??
docid025147 rev 3 96/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 27. spi timing diagram - master mode (1) 1. measurement points are done at 0.5v dd and with external c l = 30 pf. ai6 3#+/utput #0(!  -/3) /54054 -)3/ ).0 54 #0(!  -3 "). - 3"/54 ") 4). ,3"/54 ,3"). #0/, #0/, " ) 4/54 .33input t c3#+ t w3#+( t w3#+, t r3#+ t f3#+ t h-) (igh 3#+/utput #0(! #0(! #0/, #0/, t su-) t v-/ t h-/ table 61. i2s characteristics (1) symbol parameter conditions min max unit f mck i2s main clock output - 256 x 8k 256xfs (2) mhz f ck i2s clock frequency master data: 32 bits - 64xfs mhz slave data: 32 bits - 64xfs d ck i2s clock frequency duty cycle slave receiver 30 70 %
electrical characteristics stm32f302x6 stm32f302x8 97/135 docid025147 rev 3 note: refer to rm0365 reference manual i2s section for more details about the sampling frequency (fs), fmck, fck, dck values reflect only the digital peripheral behavior, source clock precision might slightly change the values dck depends mainly on odd bit value. digital contribution leads to a min of (i2sdiv/(2*i2sdiv+odd) and a max (i2sdiv+odd)/(2*i2sdiv+odd) and fs max supported for each mode/condition. t v(ws) ws valid time master mode - 20 ns t h(ws) ws hold time master mode 2 - t su(ws) ws setup time slave mode 0 - t h(ws) ws hold time slave mode 4 - t su(sd_mr) data input setup time master receiver 1 - t su(sd_sr) slave receiver 1 - t h(sd_mr) data input hold time master receiver 8 - t h(sd_sr) slave receiver 2.5 - t v(sd_st) data output valid time slave transmitter (after enable edge) - 50 t v(sd_mt) master transmitter (after enable edge) -22 t h(sd_st) data output hold time slave transmitter (after enable edge) 8 - t h(sd_mt) master transmitter (after enable edge) 1- 1. data based on characterization results, not tested in production. 2. 256xfs maximum is 36 mhz (apb1 maximum frequency) table 61. i2s characteristics (1) (continued) symbol parameter conditions min max unit
docid025147 rev 3 98/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 28. i 2 s slave timing diagram (philips protocol) (1) 1. measurement points are done at 0.5v dd and with external c l =30 pf. 2. lsb transmit/receive of the previously transmitted byte. no lsb transmit/receive is sent before the first byte. figure 29. i 2 s master timing diagram (philips protocol) (1) 1. measurement points are done at 0.5v dd and with external c l =30 pf. 2. lsb transmit/receive of the previously transmitted byte. no lsb transmit/receive is sent before the first byte. &.,qsxw &32/  &32/  w f &. :6lqsxw 6' wudqvplw 6' uhfhlyh w z &.+ w z &./ w vx :6 w y 6'b67 w k 6'b67 w k :6 w vx 6'b65 w k 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw dle /6%uhfhlyh  /6%wudqvplw  #+output #0/, #0/, t c#+ 73output 3$ receive 3$ transmit t w#+( t w#+, t su3$?-2 t v3$?-4 t h3$?-4 t h73 t h3$?-2 -3"receive "itnreceive ,3"receive -3"transmit "itntransmit ,3"transmit aib t f#+ t r#+ t v73 ,3"receive  ,3"transmit 
electrical characteristics stm32f302x6 stm32f302x8 99/135 docid025147 rev 3 usb characteristics figure 30. usb timings: definition of data signal rise and fall time table 62. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design, not tested in production. usb transceiver startup time 1 s table 63. usb dc electrical characteristics symbol parameter conditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage (2) 2. to be compliant with the usb 2.0 full-speed electrical specification, the usb_dp (d+) pin should be pulled up with a 1.5 k : resistor to a 3.0-to-3.6 v voltage range. 3.0 (3) 3. the stm32f3xxx usb functionality is ensured down to 2.7 v but not the full usb electrical characteristics which are degraded in the 2.7-to-3.0 v v dd voltage range. 3.6 v v di (4) 4. guaranteed by design, not tested in production. differential input sensitivity i(usb_dp, usb_dm) 0.2 - v v cm (4) differential common mode range includes v di range 0.8 2.5 v se (4) single ended receiver threshold 1.3 2.0 output levels v ol static output level low r l of 1.5 k : to 3.6 v (5) 5. r l is the load connected on the usb drivers. - 0.3 v v oh static output level high r l of 15 k : to v ss (5) 2.8 3.6 dl w i 66 w u 9 &56 9 'liihuhqwldo gdwdolqhv &urvvryhu srlqwv table 64. usb: full-speed electrical characteristics (1) symbol parameter conditions min typ max unit driver characteristics t r rise time (2) c l = 50 pf 4 - 20 ns t f fall time (2) c l = 50 pf 4 - 20 ns
docid025147 rev 3 100/135 stm32f302x6 stm32f302x8 electrical characteristics 115 can (controller area network) interface refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (can_tx and can_rx). 6.3.18 adc characteristics unless otherwise specified, the parameters given in table 65 to table 67 are guaranteed by design, with conditions summarized in table 22 . t rfm rise/ fall time matching t r /t f 90 - 110 % v crs output signal crossover voltage 1.3 - 2.0 v output driver impedance (3) z drv driving high and low 28 40 44 : 1. guaranteed by design, not tested in production. 2. measured from 10% to 90% of the data signal. for more detailed informations, please refer to usb specification - chapter 7 (version 2.0). 3. no external termination series resistors are required on usb_dp (d+) and usb_dm (d-), the matching impedance is already included in the embedded driver. table 64. usb: full-speed electrical characteristics (1) (continued) symbol parameter conditions min typ max unit table 65. adc characteristics symbol parameter conditions min typ max unit v dda analog supply voltage for adc - 2 - 3.6 v i dda adc current consumption (see figure 31 ) single-ended mode, 5 msps - 1011.3 1172.0 a single-ended mode, 1 msps - 214.7 322.3 single-ended mode, 200 ksps - 54.7 81.1 differential mode, 5 msps - 1061.5 1243.6 differential mode, 1 msps - 246.6 337.6 differential mode, 200 ksps - 56.4 83.0 f adc adc clock frequency - 0.14 - 72 mhz f s (1) sampling rate resolution = 12 bits, fast channel 0.01 - 5.14 msps resolution = 10 bits, fast channel 0.012 - 6 resolution = 8 bits, fast channel 0.014 - 7.2 resolution = 6 bits, fast channel 0.0175 - 9
electrical characteristics stm32f302x6 stm32f302x8 101/135 docid025147 rev 3 figure 31 illustrates the adc current consumption as per the clock frequency in single- ended and differential modes. f trig (1) external trigger frequency f adc = 72 mhz resolution = 12 bits - - 5.14 mhz resolution = 12 bits - - 14 1/f adc v ain conversion voltage range - 0 - v dda v r ain (1) external input impedance - - - 100 k : c adc (1) internal sample and hold capacitor --5-pf t cal (1) calibration time f adc = 72 mhz 1.56 s - 112 1/f adc t latr (1) trigger conversion latency regular and injected channels without conversion abort ckmode = 00 1.5 2 2.5 1/f adc ckmode = 01 - - 2 1/f adc ckmode = 10 - - 2.25 1/f adc ckmode = 11 - - 2.125 1/f adc t latrinj (1) trigger conversion latency injected channels aborting a regular conversion ckmode = 00 2.5 3 3.5 1/f adc ckmode = 01 - - 3 1/f adc ckmode = 10 - - 3.25 1/f adc ckmode = 11 - - 3.125 1/f adc t s (1) sampling time f adc = 72 mhz 0.021 - 8.35 s - 1.5 - 601.5 1/f adc tadcvreg _stup (1) adc voltage regulator start-up time ---10 s t conv (1) total conversion time (including sampling time) f adc = 72 mhz resolution = 12 bits 0.19 - 8.52 s resolution = 12 bits 14 to 614 (t s for sampling + 12.5 for successive approximation) 1/f adc 1. data guaranteed by design. table 65. adc characteristics (continued) symbol parameter conditions min typ max unit
docid025147 rev 3 102/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 31. adc typical current consumption in single-ended and differential modes 069 $'&fxuuhqwfrqvxpswlrq ?$ &orfniuhtxhqf\ 0636 table 66. maximum adc r ain (1) resolution sampling cycle @ 72 mhz sampling time [ns] @ 72 mhz r ain max (k : ) fast channels (2) slow channels other channels (3) 12 bits 1.5 20.83 0.018 na na 2.5 34.72 0.150 na 0.022 4.5 62.50 0.470 0.220 0.180 7.5 104.17 0.820 0.560 0.470 19.5 270.83 2.70 1.80 1.50 61.5 854.17 8.20 6.80 4.70 181.5 2520.83 22.0 18.0 15.0 601.5 8354.17 82.0 68.0 47.0 10 bits 1.5 20.83 0.082 na na 2.5 34.72 0.270 0.082 0.100 4.5 62.50 0.560 0.390 0.330 7.5 104.17 1.20 0.82 0.68 19.5 270.83 3.30 2.70 2.20 61.5 854.17 10.0 8.2 6.8 181.5 2520.83 33.0 27.0 22.0 601.5 8354.17 100.0 82.0 68.0
electrical characteristics stm32f302x6 stm32f302x8 103/135 docid025147 rev 3 8 bits 1.5 20.83 0.150 na 0.039 2.5 34.72 0.390 0.180 0.180 4.5 62.50 0.820 0.560 0.470 7.5 104.17 1.50 1.20 1.00 19.5 270.83 3.90 3.30 2.70 61.5 854.17 12.00 12.00 8.20 181.5 2520.83 39.00 33.00 27.00 601.5 8354.17 100.00 100.00 82.00 6 bits 1.5 20.83 0.270 0.100 0.150 2.5 34.72 0.560 0.390 0.330 4.5 62.50 1.200 0.820 0.820 7.5 104.17 2.20 1.80 1.50 19.5 270.83 5.60 4.70 3.90 61.5 854.17 18.0 15.0 12.0 181.5 2520.83 56.0 47.0 39.0 601.5 8354.17 100.00 100.0 100.0 1. data based on characterization results, not tested in production . 2. all fast channels, expect channel on pa6. 3. channel available on pa6. table 66. maximum adc r ain (1) (continued) resolution sampling cycle @ 72 mhz sampling time [ns] @ 72 mhz r ain max (k : ) fast channels (2) slow channels other channels (3)
docid025147 rev 3 104/135 stm32f302x6 stm32f302x8 electrical characteristics 115 table 67. adc accuracy - limited test conditions (1)(2) symbol parameter conditions min (3) typ max (3) unit et total unadjusted error adc clock freq. d 72 mhz sampling freq. d 5 msps v dda = 3.3 v 25c single ended fast channel 5.1 ms - 4 4.5 lsb slow channel 4.8 ms - 5.5 6 differential fast channel 5.1 ms - 3.5 4 slow channel 4.8 ms - 3.5 4 eo offset error single ended fast channel 5.1 ms - 2 2 slow channel 4.8 ms - 1.5 2 differential fast channel 5.1 ms - 1.5 2 slow channel 4.8 ms - 1.5 2 eg gain error single ended fast channel 5.1 ms - 3 4 slow channel 4.8 ms - 5 5.5 differential fast channel 5.1 ms - 3 3 slow channel 4.8 ms - 3 3.5 ed differential linearity error single ended fast channel 5.1 ms - 1 1 slow channel 4.8 ms - 1 1 differential fast channel 5.1 ms - 1 1 slow channel 4.8 ms - 1 1 el integral linearity error single ended fast channel 5.1 ms - 1.5 2 slow channel 4.8 ms - 2 3 differential fast channel 5.1 ms - 1.5 1.5 slow channel 4.8 ms - 1.5 2 enob (4) effective number of bits single ended fast channel 5.1 ms 10.8 10.8 - bit slow channel 4.8 ms 10.8 10.8 - differential fast channel 5.1 ms 11.2 11.3 - slow channel 4.8 ms 11.2 11.3 - sinad (4) signal-to- noise and distortion ratio single ended fast channel 5.1 ms 66 67 - db slow channel 4.8 ms 66 67 - differential fast channel 5.1 ms 69 70 - slow channel 4.8 ms 69 70 -
electrical characteristics stm32f302x6 stm32f302x8 105/135 docid025147 rev 3 snr (4) signal-to- noise ratio adc clock freq. d  72 mhz sampling freq d  5 msps v dda = 3.3 v 25c single ended fast channel 5.1 ms 66 67 - db slow channel 4.8 ms 66 67 - differential fast channel 5.1 ms 69 70 - slow channel 4.8 ms 69 70 - thd (4) total harmonic distortion single ended fast channel 5.1 ms - -80 -80 slow channel 4.8 ms - -78 -77 differential fast channel 5.1 ms - -83 -82 slow channel 4.8 ms - -81 -80 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative current. any positive injection current within the limits specified for i inj(pin) and 6 i inj(pin) in section 6.3.14 does not affect the adc accuracy. 3. data based on characterization results, not tested in production. 4. value measured with a ?0.5db full scale 50khz sine wave input signal. table 67. adc accuracy - limited test conditions (1)(2) (continued) symbol parameter conditions min (3) typ max (3) unit
docid025147 rev 3 106/135 stm32f302x6 stm32f302x8 electrical characteristics 115 l table 68. adc accuracy (1)(2)(3) symbol parameter conditions min (4) max (4) unit et total unadjusted error adc clock freq. d  72 mhz, sampling freq. d  5 msps 2.0 v d  v dda d 3.6 v single ended fast channel 5.1 ms - 6.5 lsb slow channel 4.8 ms - 6.5 differential fast channel 5.1 ms - 4 slow channel 4.8 ms - 4.5 eo offset error single ended fast channel 5.1 ms - 3 slow channel 4.8 ms - 3 differential fast channel 5.1 ms - 2.5 slow channel 4.8 ms - 2.5 eg gain error single ended fast channel 5.1 ms - 6 slow channel 4.8 ms - 6 differential fast channel 5.1 ms - 3.5 slow channel 4.8 ms - 4 ed differential linearity error single ended fast channel 5.1 ms - 1.5 slow channel 4.8 ms - 1.5 differential fast channel 5.1 ms - 1.5 slow channel 4.8 ms - 1.5 el integral linearity error single ended fast channel 5.1 ms - 3 slow channel 4.8 ms - 3.5 differential fast channel 5.1 ms - 2 slow channel 4.8 ms - 2.5 enob (5) effective number of bits single ended fast channel 5.1 ms 10.4 - bits slow channel 4.8 ms 10.4 - differential fast channel 5.1 ms 10.8 - slow channel 4.8 ms 10.8 - sinad (5) signal-to- noise and distortion ratio single ended fast channel 5.1 ms 64 - db slow channel 4.8 ms 63 - differential fast channel 5.1 ms 67 - slow channel 4.8 ms 67 -
electrical characteristics stm32f302x6 stm32f302x8 107/135 docid025147 rev 3 snr (5) signal-to- noise ratio adc clock freq. d  72 mhz, sampling freq d  5 msps, 2 v d  v dda d 3.6 v single ended fast channel 5.1 ms 64 - db slow channel 4.8 ms 64 - differential fast channel 5.1 ms 67 - slow channel 4.8 ms 67 - thd (5) total harmonic distortion single ended fast channel 5.1 ms - -75 slow channel 4.8 ms - -75 differential fast channel 5.1 ms - -79 slow channel 4.8 ms - -78 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative current. any positive injection current within the limits specified for i inj(pin) and 6 i inj(pin) in section 6.3.14 does not affect the adc accuracy. 3. better performance may be achieved in restricted v dda , frequency and temperature ranges. 4. data based on characterization results, not tested in production. 5. value measured with a ?0.5db full scale 50khz sine wave input signal. table 68. adc accuracy (1)(2)(3) (continued) symbol parameter conditions min (4) max (4) unit table 69. adc accuracy (1)(2) symbol parameter test conditions typ max (3) unit et total unadjusted error adc freq 72 mhz sampling freq 1msps 2.4 v v dda = v ref+ 3.6 v single-ended mode fast channel 2.5 5 lsb slow channel 3.5 5 eo offset error fast channel 1 2.5 slow channel 1.5 2.5 eg gain error fast channel 2 3 slow channel 3 4 ed differential linearity error fast channel 0.7 2 slow channel 0.7 2 el integral linearity error fast channel 1 3 slow channel 1.2 3 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative current. any positive injection current within the limits specified for iinj(pin) and iinj(pin) in section 6.3.14: i/o port characteristics does not affect the adc accuracy. 3. data based on characterization results, not tested in production.
docid025147 rev 3 108/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 32. adc accuracy characteristics figure 33. typical connection diagram using the adc 1. refer to table 65 for the values of r ain . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. general pcb design guidelines power supply decoupling should be performed as shown in figure 11 . the 10 nf capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. ( 2 ( * /6% ,'($/  ([dpsohridqdfwxdowudqvihufxuyh  7khlghdowudqvihufxuyh  (qgsrlqwfruuhodwlrqolqh ( 7 7rwdo 8qdgmxvwhg (uuru pd[lpxp ghyldwlrq ehwzhhqwkhdfwxdodqgw khlghdowudqvihufxuyhv ( 2 2iivhw(uurughyldwlrqehwzhhqwkhiluvwdfwxdo wudqvlwlrqdqgwkhiluvwlghdorqh ( * *dlq (uuru ghyldwlrq ehwzhhq wkh odvw lghdo wudqvlwlrqdqgwkhodvwdfwxdorqh ( ' 'liihuhqwldo/lqhdulw\(uurupd[lpxpghyldwlrq ehwzhhqdfwxdovwhsvdqgwkhlghdorqh ( / ,qwhjudo /lqhdulw\ (uuru pd[lpxp ghyldwlrq ehwzhhq dq\ dfwxdo wudqvlwlrq dqg wkh hqg srlqw fruuhodwlrqolqh                    ( 7 ( ' ( /  9 ''$ 9 66$ 9 ''$  /6% ,'($/   069 069 9 '' $,1[ , / ? ?$  9 9 7 5 $,1  & sdu dvlwlf 9 $,1  9 9 7 5 $'& & $'& cju dpowfsufs 4bnqmfboeipme"%$ dpowfsufs
electrical characteristics stm32f302x6 stm32f302x8 109/135 docid025147 rev 3 6.3.19 dac electrical specifications table 70. dac characteristics symbol parameter conditions min typ max unit v dda analog supply voltage dac output buffer on 2.4 - 3.6 v r load (1) resistive load dac output buffer on 5 - - k : r o (1) output impedance dac output buffer on - - 15 k : c load (1) capacitive load dac output buffer on - - 50 pf v dac_out (1) voltage on dac_out output corresponds to 12-bit input code (0x0e0) to (0xf1c) at v dda = 3.6 v and (0x155) and (0xeab) at v dda = 2.4 v dac output buffer on. 0.2 - v dda ? 0.2 v dac output buffer off - 0.5 v dda - 1lsb mv i dda (3) dac dc current consumption in quiescent mode (standby mode) (2) with no load, middle code (0x800) on the input. - - 380 a with no load, worst code (0xf1c) on the input. - - 480 a dnl (3) differential non linearity difference between two consecutive code-1lsb) given for a 10-bit input code - - 0.5 lsb given for a 12-bit input code - - 2 lsb inl (3) integral non linearity (difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095) given for a 10-bit input code - - 1 lsb given for a 12-bit input code - - 4 lsb offset (3) offset error (difference between measured value at code (0x800) and the ideal value = v dda /2) - - - 10 mv given for a 10-bit input code at v dda = 3.6 v - - 3 lsb given for a 12-bit input code at v dda = 3.6 v - - 12 lsb gain error (3) gain error given for a 12-bit input code - - 0.5 % t settling (3) settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when dac_out reaches final value 1lsb c load d 50 pf, r load t 5 k : -3 4 s update rate (3) max frequency for a correct dac_out change when small variation in the input code (from code i to i+1lsb) c load d 50 pf, r load t 5 k : - - 1 ms/s
docid025147 rev 3 110/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 34. 12-bit buffered /non-buffered dac 1. the dac integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. 6.3.20 comparator characteristics t wakeup (3) wakeup time from off state (setting the enx bit in the dac control register) c load d 50 pf, r load t 5 k : - 6.5 10 s psrr+ (1) power supply rejection ratio (to v dda ) (static dc measurement c load 50 pf, no r load t 5 k : - ?67 ?40 db 1. guaranteed by design, not tested in production. 2. quiescent mode refers to the state of the dac a keeping steady value on the output, so no dynamic consumption is involved. 3. data based on characterization results, not tested in production. table 70. dac characteristics (continued) symbol parameter conditions min typ max unit 5 /2$' & /2$' %xiihuhg1rqexiihuhg'$& '$&[b287 %xiihu  elw gljlwdowr dqdorj frqyhuwhu dl table 71. comparator characteristics (1) symbol parameter conditions min. typ. max. unit v dda analog supply voltage - 2 - 3.6 v v in comparator input voltage range -0-v dda v bg scaler input voltage - - v refinit - v sc scaler offset voltage - - 5 10 mv t s_sc scaler startup time from power down - - - 0.1 ms t start comparator startup time v dda t 2.7 v--4 s v dda  2.7 v - - 10
electrical characteristics stm32f302x6 stm32f302x8 111/135 docid025147 rev 3 t d propagation delay for 200 mv step with 100 mv overdrive v dda t 2.7 v - 25 28 ns  v dda  2.7 v - 28 30 propagation delay for full range step with 100 mv overdrive v dda t 2.7 v - 32 35  v dda  2.7 v - 35 40 v offset comparator offset error v dda t 2.7 v - r 5 r 10 mv  v dda  2.7 v - - r 25 tv offset total offset variation full temperature range - - 3 mv i dd(comp) comp current consumption - - 400 600 a 1. guaranteed by design, not tested in production. table 71. comparator characteristics (1) (continued) symbol parameter conditions min. typ. max. unit
docid025147 rev 3 112/135 stm32f302x6 stm32f302x8 electrical characteristics 115 6.3.21 operational amplifier characteristics table 72. operational amplifier characteristics (1) symbol parameter condition min typ max unit v dda analog supply voltage - 2.4 - 3.6 v cmir common mode input range - 0 - v dda v vi offset input offset voltage maximum calibration range 25c, no load on output. --4 mv all voltage/temp. --6 after offset calibration 25c, no load on output. - - 1.6 all voltage/temp. --3 ' vi offset input offset voltage drift - - 5 - v/c i load drive current - - - 500 a iddopamp consumption no load, quiescent mode - 690 1450 a cmrr common mode rejection ratio - - 90 - db psrr power supply rejection ratio dc 73 117 - db gbw bandwidth - - 8.2 - mhz sr slew rate - - 4.7 - v/ s r load resistive load - 4 - - k : c load capacitive load - - - 50 pf voh sat high saturation voltage r load = min, input at v dda . - - 100 mv r load = 20k, input at v dda . --20 vol sat low saturation voltage rload = min, input at 0v - - 100 rload = 20k, input at 0v. --20 m m phase margin - - 62 - t offtrim offset trim time: during calibration, minimum time needed between two steps to have 1 mv accuracy ---2ms t wakeup wake up time from off state. c load d 50 pf, r load t 4 k : follower configuration - 2.8 5 s t s_opam_vout adc sampling time when reading the opamp output 400 - - ns
electrical characteristics stm32f302x6 stm32f302x8 113/135 docid025147 rev 3 pga gain non inverting gain value - -2- - -4- -8- -16- r network r2/r1 internal resistance values in pga mode (2) gain=2 - 5.4/5.4 - k : gain=4 - 16.2/5.4 - gain=8 - 37.8/5.4 - gain=16 - 40.5/2.7 - pga gain error pga gain error - -1% - 1% % i bias opamp input bias current - - - r 0.2 (3) a pga bw pga bandwidth for different non inverting gain pga gain = 2, cload = 50pf, rload = 4 k : -4- mhz pga gain = 4, cload = 50pf, rload = 4 k : -2- pga gain = 8, cload = 50pf, rload = 4 k : -1- pga gain = 16, cload = 50pf, rload = 4 k : - 0.5 - en voltage noise density @ 1khz, output loaded with 4 k : - 109 - @ 10khz, output loaded with 4 k : -43- 1. guaranteed by design, not tested in production. 2. r2 is the internal resistance between opamp output and opamp inverting input. r1 is the internal resistance between opamp inverting input and ground. the pga gain =1+r2/r1 3. mostly tta i/o leakage, when used in analog mode. table 72. operational amplifier characteristics (1) (continued) symbol parameter condition min typ max unit nv hz -----------
docid025147 rev 3 114/135 stm32f302x6 stm32f302x8 electrical characteristics 115 figure 35. opamp voltage noise versus frequency
electrical characteristics stm32f302x6 stm32f302x8 115/135 docid025147 rev 3 6.3.22 temperature sensor characteristics 6.3.23 v bat monitoring characteristics table 73. ts characteristics symbol parameter min typ max unit t l (1) 1. guaranteed by design, not tested in production. v sense linearity with temperature - r 1 r 2c avg_slope (1) average slope 4.0 4.3 4.6 mv/c v 25 voltage at 25 c 1.34 1.43 1.52 v t start (1) startup time 4 - 10 s t s_temp (1)(2) 2. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the temperature 2.2 - - s table 74. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3.3 v 0x1fff f7b8 - 0x1fff f7b9 ts_cal2 ts adc raw data acquired at temperature of 110 c v dda = 3.3 v 0x1fff f7c2 - 0x1fff f7c3 table 75. v bat monitoring characteristics symbol parameter min typ max unit r resistor bridge for v bat -50-k : q ratio on v bat measurement - 2 - er (1) 1. guaranteed by design, not tested in production. error on q -1 - +1 % t s_vbat (1)(2) 2. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the v bat 1mv accuracy 2.2 - - s
docid025147 rev 3 116/135 stm32f302x6 stm32f302x8 package characteristics 132 7 package characteristics 7.1 package mechanical data in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark.
package characteristics stm32f302x6 stm32f302x8 117/135 docid025147 rev 3 figure 36. wlcsp49 wafer level chip size package 1. primary datum z and seating plane are defined by the spherical crowns of the bump. 2. bump position designation per jesd 95-1, spp-010. %rwwrpylhz %xpsvlgh 6lghylhz )urqwylhz 7rsylhz :dihuedfnvlgh $edooorfdwlrq h ) * h h h ( ' $ $ 'hwdlo$ $ eee = 'hwdlo$ urwdwhg 6hdwlqjsodqh 1rwh 1rwh %xps [ hhh = 2ulhqwdwlrq uhihuhqfh $ [ ' ( $ $ e $;-b0(b9 $
docid025147 rev 3 118/135 stm32f302x6 stm32f302x8 package characteristics 132 table 76. wlcsp49 wafer level chip size package mechanical data (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. symbol millimeters inches min typ max min typ max a 0.525 0.555 0.585 0.0207 0.0219 0.0230 a1 - 0.175 - - 0.0069 - a2 - 0.380 - - 0.0150 - a3 (2) 2. back side coating - 0.025 - - 0.0010 - b (3) 3. dimension is measured at the maximum bump diameter parallel to primary datum z. 0.220 0.250 0.280 0.0087 0.0098 0.0110 d 3.382 3.417 3.452 0.1331 0.1345 0.1359 e 3.116 3.151 3.186 0.1227 0.1241 0.1254 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - f - 0.508 - - 0.200 - g - 0.375 - - 0.148 - aaa - 0.100 - - 1.9291 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - n number of pins 49
package characteristics stm32f302x6 stm32f302x8 119/135 docid025147 rev 3 device marking the following figure shows the marking for the wlcsp49 package. figure 37. wlcsp49 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 3urgxfwlghqwlilfdwlrq  'dwhfrgh : 88 3 5hylvlrqfrgh '$
docid025147 rev 3 120/135 stm32f302x6 stm32f302x8 package characteristics 132 figure 38. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline 1. drawing is not to scale. ! ! ! 3%!4).' 0,!.% ccc # b # c ! , , + '!5'%0,!.% mm )$%.4)&)#!4)/. 0). $ $ $ e         % % % 7?-%?6
package characteristics stm32f302x6 stm32f302x8 121/135 docid025147 rev 3 figure 39. lqfp64 recommended footprint 1. drawing is not to scale. 2. dimensions are in millimeters. table 77. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 11.800 12.000 12.200 0.4646 0.4724 0.4803 d1 9.800 10.000 10.200 0.3858 0.3937 0.4016 d. 7.500 e 11.800 12.000 12.200 0.4646 0.4724 0.4803 e1 9.800 10.00 10.200 0.3858 0.3937 0.4016 e 0.500 0.0197 k 0 3.5 7 0 3.5 7 l 0.450 0.600 0.75 0.0177 0.0236 0.0295 l1 1.000 0.0394 ccc 0.080 0.0031                ai
docid025147 rev 3 122/135 stm32f302x6 stm32f302x8 package characteristics 132 device marking the following figure shows the marking for the lqfp64 package. figure 40. lqfp64 marking example (package top view 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 3urgxfwlghqwlilfdwlrq  3lqlghqwlilfdwlrq 45.' 35 3 :88 5hylvlrqfrgh 'dwhfrgh
package characteristics stm32f302x6 stm32f302x8 123/135 docid025147 rev 3 figure 41. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package outline 1. drawing is not to scale. "?-%?6 0). )$%.4)&)#!4)/. ccc # # $ mm '!5'%0,!.% b ! ! ! c ! , , $ $ % % % e         3%!4).' 0,!.% +
docid025147 rev 3 124/135 stm32f302x6 stm32f302x8 package characteristics 132 table 78. lqfp48 ? 7 x 7mm, 48-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 5.500 0.2165 e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 5.500 0.2165 e 0.500 0.0197 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 1.000 0.0394 k 0 3.5 7 0 3.5 7 ccc 0.080 0.0031
package characteristics stm32f302x6 stm32f302x8 125/135 docid025147 rev 3 figure 42. lqfp48 recommended footprint 1. drawing is not to scale. 2. dimensions are in millimeters.                  aic  
docid025147 rev 3 126/135 stm32f302x6 stm32f302x8 package characteristics 132 device marking the following figure shows the marking for the lqfp48 package. figure 43. lqfp48 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity.  3urgxfw lghqwlilfdwlrq 45.' $5 3 :88 3lq lghqwlilfdwlrq 5hylvlrqfrgh 'dwhfrgh 069
package characteristics stm32f302x6 stm32f302x8 127/135 docid025147 rev 3 figure 44. 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5) 1. drawing is not to scale. 2. there is an exposed die pad on the underside of the ufqfpn package. this pad is not internally connected to the vss or vdd power pads. it is recommended to connect it to vss. 3. all leads/pads should also be soldered to the pcb to improve the lead solder joint life. table 79. 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data symbol millimeters inches (1) typ min max typ min max a 0.550 0.500 0.600 0.0217 0.0197 0.0236 a1 0.020 0.000 0.050 0.0008 0.0000 0.0020 a3 0.200 - - 0.0079 - - b 0.250 0.180 0.300 0.0098 0.0071 0.0118 d 5.000 4.850 5.150 0.1969 0.1909 0.2028 d2 3.450 3.200 3.700 0.1358 0.1260 0.1457 e 5.000 4.850 5.150 0.1969 0.1909 0.2028 e2 3.450 3.200 3.700 0.1358 0.1260 0.1457 e 0.500 - - 0.0197 - - !"?-%?6
docid025147 rev 3 128/135 stm32f302x6 stm32f302x8 package characteristics 132 figure 45. ufqfpn32 recommended footprint 1. drawing is not to scale. 2. dimensions are in millimeters. l 0.400 0.300 0.500 0.0157 0.0118 0.0197 ddd - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 79. 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data symbol millimeters inches (1) typ min max typ min max a0b8_fp_v2 5.30 3.80 0.60 3.45 0.50 3.45 3.80 0.75 3.80 0.30 5.30          
package characteristics stm32f302x6 stm32f302x8 129/135 docid025147 rev 3 device marking the following figure shows the marking for the ufqfpn32 package. figure 46. ufqfpn32 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. ', 3urgxfwlghqwlilfdwlrq  5hylvlrqfrgh :88 'dwhfrgh 3 3lqlghqwlilhu 069
docid025147 rev 3 130/135 stm32f302x6 stm32f302x8 package characteristics 132 7.2 thermal characteristics the maximum chip junction temperature (t j max) must never exceed the values given in table 22: general operating conditions . the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max x 4 ja ) where: x t a max is the maximum ambient temperature in c, x4 ja is the package junction-to-ambient thermal resistance, in q c/w, x p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), x p int max is the product of i dd and v dd , expressed in watts. this is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = 6 (v ol i ol ) + 6 ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. 7.2.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org table 80. package thermal characteristics symbol parameter value unit 4 ja thermal resistance junction-ambient lqfp64 - 10 10 mm / 0.5 mm pitch 45 c/w thermal resistance junction-ambient lqfp48 - 7 7 mm 55 thermal resistance junction-ambient wcsp49 - 3.4 x 3.4 mm 49 thermal resistance junction-ambient ufqfn32 - 5 x 5 mm 37
package characteristics stm32f302x6 stm32f302x8 131/135 docid025147 rev 3 7.2.2 selecting the product temperature range when ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in section 8: part numbering . each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. as applications do not commonly use the stm32f302x6 stm32f302x8 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. the following examples show how to calculate the temperature range needed for a given application. example 1: high-performance application assuming the following application conditions: maximum ambient temperature t amax = 82 c (measured according to jesd51-2), i ddmax = 50 ma, v dd = 3.5 v, maximum 3 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v and maximum 2 i/os used at the same time in output at low level with i ol = 20 ma, v ol = 1.3 v p intmax = 50 ma 3.5 v= 175 mw p iomax = 3 8 ma 0.4 v + 2 20 ma 1.3 v = 61.6 mw this gives: p intmax = 175 mw and p iomax = 61.6 mw: p dmax = 175 + 61.6 = 236.6 mw thus: p dmax = 236.6 mw using the values obtained in table 80 t jmax is calculated as follows: ? for lqfp64, 45c/w t jmax = 82 c + (45c/w 236.6 mw) = 82c + 10.65 c = 92.65c this is within the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at least with the temperature range suffix 6 (see section 8: part numbering ).
docid025147 rev 3 132/135 stm32f302x6 stm32f302x8 package characteristics 132 example 2: high-temperature application using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature t j remains within the specified range. assuming the following application conditions: maximum ambient temperature t amax = 115 c (measured according to jesd51-2), i ddmax = 20 ma, v dd = 3.5 v, maximum 9 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v p intmax = 20 ma 3.5 v= 70 mw p iomax = 9 8 ma 0.4 v = 28.8 mw this gives: p intmax = 70 mw and p iomax = 28.8 mw: p dmax = 70 + 28.8 = 98.8 mw thus: p dmax = 98.8 mw using the values obtained in table 80 t jmax is calculated as follows: ? for lqfp100, 45c/w t jmax = 115c + (45c/w 98.8 mw) = 115 c + 4.44c = 119.44c this is within the range of the suffix 7 version parts (?40 < t j < 125 c). in this case, parts must be ordered at least with the temperature range suffix 7 (see section 8: part numbering ).
docid025147 rev 3 133/135 stm32f302x6 stm32f302x8 part numbering 133 8 part numbering table 81. ordering information scheme example: stm32 f 302 r 8 t 6 xxx device family stm32 = arm ? -based 32-bit microcontroller product type f = general-purpose device subfamily 302 = stm32f302xx, 2.0 to 3.6 v operating voltage pin count k = 32 pins c = 48 or 49 pins r = 64 pins flash memory size 6 = 32 kbytes of flash memory 8 = 64 kbytes of flash memory package t = lqfp y= wlcsp u= ufqfpn temperature range 6 = industrial temperature range, ?40 to 85 c 7 = industrial temperature range, ?40 to 105 c options xxx = programmed parts tr = tape and reel
docid025147 rev 3 134/135 stm32f302x6 stm32f302x8 revision history 134 9 revision history table 82. document revision history date revision changes 10-apr-2014 1 initial release. 13-may-2014 2 updated table 12: stm32f302x6/8 pin definitions . added the input voltage on boot0 pin in table 19: voltage characteristics . 02-dec-2014 3 applied the following updates: ? added ?interconnect matrix? to features , ? updated the timers-related information in table 1: stm32f302x6/8 device features and peripheral counts , ? updated figure 1: ds9896 block diagram , ? updated section 3.5.1: power supply schemes and added table 2: external analog supply values for analog peripherals , ? added a table footnote about touch sensing sensitivity for pins pa4 and pa6 in table 12: stm32f302x6/8 pin definitions , ? renamed usartx_rts as usartx_rts_de where x=1, 2 or 3, ? updated i dd values at 48 mhz (supply current in run mode, executing from ram/external clock (hse bypass)) in table 28: typical and maximum current consumption from vdd supply at vdd = 3.6v , ? added i dda parameter in table 65: adc characteristics and added figure 31: adc typical current consumption in single-ended and differential modes , ? updated figure 18: hsi oscillator accuracy characterization results for soldered parts and table 42: hsi oscillator characteristics , ? updated t wustop maximum values in table 37: low- power mode wakeup timings , ? updated the supply current in stop mode values for ta=25 deg. celsius in table 30: typical and maximum v dd consumption in stop and standby modes , ? replaced all occurrences of v dda monitoring with v dda supervisor in section 6: electrical characteristics , ? added footnotes to figure 44: 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5) , ? updated the marking information ( figure 37: wlcsp49 marking example (package top view) , figure 40: lqfp64 marking example (package top view , figure 43: lqfp48 marking example (package top view) , figure 46: ufqfpn32 marking example (package top view) ).
docid025147 rev 3 135/135 stm32f302x6 stm32f302x8 135 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2014 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of STM32F302C8T7

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X